【摘要】數(shù)列的求和高三備課組一、基本方法1.直接用等差、等比數(shù)列的求和公式求和。公比含字母是一定要討論無(wú)窮遞縮等比數(shù)列時(shí),dnnnaaanSnn2)1(2)(11???????????????????)1
2024-11-22 00:27
【摘要】數(shù)列的求和數(shù)列求和的方法將一個(gè)數(shù)列拆成若干個(gè)簡(jiǎn)單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新數(shù)列(容易求和).一、拆項(xiàng)求和二、并項(xiàng)求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)
2024-11-23 02:53
【摘要】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件18《數(shù)列數(shù)列通項(xiàng)與數(shù)列中的不等式》一、基礎(chǔ)知識(shí).n有有關(guān)的命題:第一步:驗(yàn)證初始狀態(tài),即“n=n0時(shí)命題成立”;第二步:假設(shè)推理,即“假設(shè)n=k(k≥n0)時(shí)命題成立,由此出發(fā),推得n=k+1時(shí)命題也成立”.:21,0???aaa:注
【摘要】數(shù)列求和的方法將一個(gè)數(shù)列拆成若干個(gè)簡(jiǎn)單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(xiàng)(或若干項(xiàng))并成一項(xiàng)(或一組)得到一個(gè)新數(shù)列(容易求和).一、拆項(xiàng)求和二、并項(xiàng)求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)n+1
2024-11-23 05:50
【摘要】第十四講:數(shù)列求和及綜合應(yīng)用一、考綱和課標(biāo)要求:1、掌握數(shù)列求和的常見(jiàn)的基本方法2、解決數(shù)列間綜合及數(shù)列與其他知識(shí)綜合的相關(guān)問(wèn)題3、09考綱有2個(gè)C級(jí)要求在這部分出現(xiàn)二:本專(zhuān)題需解決的問(wèn)題:(1)化歸為基本數(shù)列的求和問(wèn)題(2)數(shù)列間的綜合(基本數(shù)列、關(guān)聯(lián)數(shù)列)(3)數(shù)列與其
2024-11-24 01:26
【摘要】2018屆高三第一輪復(fù)習(xí)【20】——數(shù)列求和與求通項(xiàng)一、知識(shí)梳理:1.幾種數(shù)列的思想方法:(1)數(shù)列通項(xiàng)公式的常見(jiàn)求法(2)數(shù)列前項(xiàng)和的常見(jiàn)求法2.方法歸納:(1)求通項(xiàng):1、迭代法:;2、構(gòu)造法:;3、取倒數(shù):;4、取對(duì)數(shù):;5、公式法:;6、特征根法:,;7、待定系數(shù)法:;(2)求和:1、錯(cuò)位相減法:等比數(shù)列求和公式的由
2025-04-26 12:37
【摘要】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的差an-an-1為常數(shù)d數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的比為常數(shù)q(q≠0)專(zhuān)有名詞d為公差q為公比通項(xiàng)公式an=a1+(n-1)d
2025-04-26 01:43
【摘要】數(shù)列求和方法等差數(shù)列、等比數(shù)列的求和是高考??嫉膬?nèi)容之一,一般數(shù)列求和的基本思想是將其通項(xiàng)變形,化歸為等差數(shù)列或等比數(shù)列的求和問(wèn)題,或利用代數(shù)式的對(duì)稱(chēng)性,采用消元等方法來(lái)求和.下面我們結(jié)合具體實(shí)例來(lái)研究求和的方法.一、直接求和法(或公式法)將數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,直接運(yùn)用等差或等比數(shù)列的前n項(xiàng)和公式求得.例1求.解:原式. 由等差數(shù)列求和公式,得原式.二、
2024-08-07 16:03
【摘要】等比數(shù)列的定義)2(?n)1(?nqaann??12.qaann??1或1.qaaaaaaaaaann????????145342312如果等比數(shù)列{an}的首項(xiàng)是a1,公比是q,則11??
2024-08-09 15:34
【摘要】求通項(xiàng)公式專(zhuān)題一、利用與關(guān)系求1-1已知數(shù)列的前項(xiàng)和,求通項(xiàng)公式例1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)變式訓(xùn)練1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)1-2已知與的關(guān)系式,求例2 已知數(shù)列的前項(xiàng)和,求的通項(xiàng)公式..變式訓(xùn)練2已知數(shù)列的前項(xiàng)和滿(mǎn)足,求的通項(xiàng)公式..變式訓(xùn)練3
2025-04-03 02:53
【摘要】?要點(diǎn)183。疑點(diǎn)183??键c(diǎn)?課前熱身?能力183。思維183。方法?延伸183。拓展?誤解分析第2課時(shí)等差、等比數(shù)列的通項(xiàng)及求和公式要點(diǎn)183。疑點(diǎn)183??键c(diǎn)(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S(k-1)n…成等差(
2024-08-09 15:40
【摘要】數(shù)列求和復(fù)習(xí):1、數(shù)列和的定義數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n+1,則a4+a5+a6+…+a10=____2、等差、等比數(shù)列的前n項(xiàng)和的公式3、在等差、等比數(shù)列的前n項(xiàng)和的公式中運(yùn)用了哪些求思想:①(等差數(shù)列)倒序相加②(等比數(shù)列)錯(cuò)
【摘要】?掌握數(shù)列求和的幾種常見(jiàn)方法.?【命題預(yù)測(cè)】?數(shù)列的求和在近幾年高考中,填空題與解答題都有出現(xiàn),重點(diǎn)以容易題和中檔題為主,基本知識(shí)以客觀(guān)題出現(xiàn),綜合知識(shí)則多以解答題體現(xiàn),主要是探索型和綜合型題目.復(fù)習(xí)時(shí),要具有針對(duì)性地訓(xùn)練,并以“注重?cái)?shù)學(xué)思想方法、強(qiáng)化運(yùn)算能力、重點(diǎn)知識(shí)重點(diǎn)訓(xùn)練”的角度做好充分準(zhǔn)備.第
2025-01-16 07:27
【摘要】高三第一輪復(fù)習(xí)《必修五第二章數(shù)列》?第一節(jié)數(shù)列的概念與簡(jiǎn)單表示法在教學(xué)中要充分發(fā)揮學(xué)生的主體地位,盡量讓學(xué)生獨(dú)立完成包括例題在內(nèi)的題目,教師在于對(duì)方法和規(guī)律的總結(jié),在于引導(dǎo)。知識(shí)點(diǎn)考試大綱說(shuō)明考情分析數(shù)列的概念和簡(jiǎn)單表示種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式)
2024-08-22 10:50
【摘要】“數(shù)列通項(xiàng)公式及數(shù)列求和”課例一、設(shè)計(jì)理念首先通過(guò)解剖導(dǎo)學(xué)案,讓學(xué)生經(jīng)歷知識(shí)網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報(bào)和例題解法展示活動(dòng)中進(jìn)行知識(shí)網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導(dǎo)學(xué)案為載體、立足過(guò)程、增強(qiáng)解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學(xué)的一個(gè)重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會(huì)出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何