【摘要】2abab??(0,0)ab??學習目標?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當且僅當a=b時取“=”號)如果a,b是正數(shù),那么(當且僅當a=b
2024-11-24 17:13
【摘要】基本不等式學習目標?學習目標:理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學法指導:發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學習重點、難點:一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-12-05 11:40
【摘要】2abab??§:ICM2022會標趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對于任意實數(shù)a、b,我們有當且僅當a=b時,等號成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-08-19 15:14
【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-22 23:45
【摘要】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當且僅當a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當a、b∈R成立嗎?)
2024-11-12 19:19
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎(chǔ)高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-15 16:33
【摘要】基本不等式第2課時高一數(shù)學必修5第三章《不等式》利用求最值的要點:,,2abababR????(1)最值存在的條件的:一正,二定
2024-08-31 01:28
【摘要】邊城高級中學張秀洲1、了解兩個正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實際的應(yīng)用問題.自學教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實際的應(yīng)用問題.三、《教材》習題第5、6、7、8、9、10、11題.
2025-08-02 03:13
【摘要】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個圖中數(shù)學家大會的會標,你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時,等號成立當且僅當我們有一般地,對于任意實數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2024-08-20 05:43
【摘要】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2024-08-20 04:40
【摘要】高二數(shù)學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2024-08-20 03:53
【摘要】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》教學目標?推導并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學重點:?推導并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2024-08-20 04:41
【摘要】基本不等式在求最值中的應(yīng)用與完善楊亞軍函數(shù)的最值是函數(shù)這一章節(jié)中很重要的部分,它的重要性不僅在題型的多樣、方法的靈活上,更主要的是其在實際生活及生產(chǎn)實踐中的應(yīng)用。高考應(yīng)用題幾乎都與最值問題有關(guān),,才能更好地去解決實際應(yīng)用問題。一、基本不等式的內(nèi)容及使用要點1、二元基本不等式:①a,b∈R時,a2+b2≥2ab(當且僅當a=b時“=”號成立);②a,b≥0時,a+b
2024-08-20 01:31
【摘要】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-08-01 17:21