【正文】
ive method, structure method is widely used different parts of the secondary school mathematics petition. And constructing method to prove inequality in terms of its originality and clever tend to surprise. Just at home, every year hundreds of papers about construction method of problem solving, visible appeal of this method.This article altogether is divided into three chapters. First chapter is to outline of construction method, which tells the structure thought and method of history and the study of the thought and method at home and abroad present situation, points out that the construction should follow the rules to solve problems. The second chapter is the key, of constructing method to prove inequality of basic mathematical model, and bining the math petition, the university entrance exam of many examples, to experience the enchantment of the construction method from them to see the beauty of math. The third chapter is epilogue. Contrast to nearly three decades of literature, the innovation of this paper lies in that will strengthen the proposition to prove inequality as a new model of constructing method to prove inequality made some exploration, discussed the tectonic process made the corresponding thinking, the germinal tectonic thinking process of certain models to give more detailed analysis.【KEYWORDS】Constructing method;Structural thought ;model .目 錄1 構造法概述 1 構造法的含義 1 研究歷史及現(xiàn)狀 2 構造法解題應遵循的原則 2 2 模型概述 3 3 如何構造模型 43 用構造法證明不等式 4 構造函數(shù) 4 6 代數(shù)不等式 8 構造方程 8 構造數(shù)列 10 4 結語 20 總結與回顧 20參考文獻 21致謝 21331 構造法概述 構造法的含義如何界定構造法?關于構造法,目前主要是從兩個方面來理解。對比近三十年的文獻,本文的創(chuàng)新之處在于將加強命題證明不等式作為構造法證明不等式的一種新模型作了一些探索,對思維構造過程作了相應論述,對某些模型的構造思維生發(fā)過程給予比較細致的剖析。第三章結合數(shù)學競賽、高考的眾多實例對各個模型進行說明,對一些問題給出新的解答,從中體會構造法的迷人之處,窺見數(shù)學之美。第一章對構造法進行概述,即講述了構造思想及構造法的歷史和目前國內外對這一思想與方法的研究現(xiàn)狀,指出構造法解題所應遵循的規(guī)則。僅僅在國內,每年都有數(shù)以百計的關于構造法解題的論文涌現(xiàn),可見這一方法的吸引力之大。作為一種極富創(chuàng)新精神的方法,構造法被廣泛的運用于中學數(shù)學競賽的各個部分。加之時代因素,由這則小消息作為發(fā)端,國內數(shù)學界形成了一波研究數(shù)學競賽,研究初等數(shù)學的高潮。寧波大學理學院本科畢業(yè)設計(論文) 編號: 本科畢業(yè)設計(論文)題目: 構造法證明不等式 Constructing method to prove inequality 摘 要【摘要】1978年,《參考消息》第四版刊載了當年在布加勒斯特舉行的第二十屆國際數(shù)學奧林匹克競賽題。由此,國