【摘要】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均價(jià)格,然后利用不等式知識(shí)論證。解:
2024-11-18 21:53
【摘要】復(fù)習(xí)目標(biāo):掌握不等式的相關(guān)知識(shí)在求函數(shù)定義域、值域、單調(diào)性的判斷與證明、一元二次方程根的討論與應(yīng)用1、求下列函數(shù)的定義域:(1)y=(2)y=log(x2-2x-3)(3)y=+lg(3-x)2、求下列函數(shù)的值域:(1)y=2-3x
2024-11-19 02:27
【摘要】一元一次不等式組的應(yīng)用宇宙之大粒子之微火箭之速化工之巧地球之變生物之謎日用之繁數(shù)學(xué)無(wú)處不在------華羅庚,課題引入某班級(jí)在迎世博知識(shí)競(jìng)答中,共設(shè)置了20道問(wèn)題,評(píng)分標(biāo)準(zhǔn)為:對(duì)于每一道
2024-12-03 23:37
【摘要】制作:皖黃山市徽州區(qū)第一學(xué)凌榮壽例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均
2024-11-30 01:29
【摘要】第一篇:均值不等式的應(yīng)用 均值不等式的應(yīng)用 教學(xué)目標(biāo): 教學(xué)重點(diǎn):應(yīng)用教學(xué)難點(diǎn):應(yīng)用 教學(xué)方法:講練結(jié)合教 具:多媒體教學(xué)過(guò)程 一、復(fù)習(xí)引入: ,平均不等式:調(diào)和平均數(shù)≤幾何平均數(shù)≤...
2024-10-27 19:15
【摘要】不等式不等式不等式不等式不等式的應(yīng)用.不等式的應(yīng)用性質(zhì)1(傳遞性)如果ab,bc,則ac.性質(zhì)2(加法法則)如果ab,那么a+cb+c.性質(zhì)3(乘法法則)如果a&
2024-12-03 05:33
【摘要】FS-62-08-數(shù)尖02-1/8JXB1無(wú)★代表普通高中、
2025-01-15 02:20
【摘要】不等式的綜合應(yīng)用問(wèn)題【要點(diǎn)】1.不等式的應(yīng)用非常廣泛,它貫穿于整個(gè)高中數(shù)學(xué)的始終,諸如集合問(wèn)題,方程(組)的解的討論.函數(shù)定義域、值域的確定,函數(shù)單調(diào)性的研究,三角、數(shù)列、復(fù)數(shù)、立體幾何中的最值問(wèn)題、解析幾何中的直線與圓錐曲線位置關(guān)系的討論,等等,這些無(wú)一不與不等式有著密切的關(guān)系.2.不等式的應(yīng)用大致可分為兩類(lèi):一類(lèi)是建立不等式求參數(shù)的取
2024-11-23 03:20
【摘要】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-26 08:24
【摘要】問(wèn)題;國(guó)貿(mào)大廈準(zhǔn)備在元旦期間舉行商品大酬賓銷(xiāo)售活動(dòng).準(zhǔn)備分兩次降價(jià)后再銷(xiāo)售,設(shè)計(jì)三種方案:8折,第二次再7折后銷(xiāo)售;7折,第二次再8折后銷(xiāo)售;.請(qǐng)問(wèn)哪一種方案降價(jià)最少?不等式在實(shí)際問(wèn)題中的應(yīng)用汽車(chē)在實(shí)際行駛中,由于慣性作用,剎車(chē)后還要繼續(xù)往前滑行一段距離才能停住,我們稱(chēng)這段距離為“剎車(chē)距
【摘要】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應(yīng)用題全部含義的一個(gè)不等的關(guān)系;(3)列:根據(jù)這個(gè)不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個(gè)所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫(xiě)出答案,出售時(shí)標(biāo)價(jià)為1200元,后來(lái)由于商品積壓,商店準(zhǔn)備打折出售但要保持利
2024-09-01 07:18
【摘要】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-07-04 01:24
【摘要】第一篇:均值不等式應(yīng)用 均值不等式應(yīng)用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時(shí)取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14
【摘要】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
2024-08-07 23:59
【摘要】第二十二講不等式的應(yīng)用100件某種商店,為使這批貨物盡快脫手,該商店采取了如下銷(xiāo)售方案,先將價(jià)格提高到原來(lái)的,再作三次降價(jià)處理:第一次降價(jià)30%,標(biāo)出“虧本價(jià)”;第二次降價(jià)30%,標(biāo)出“破產(chǎn)價(jià)”第三次降價(jià)30%,標(biāo)出“跳樓價(jià)”.三次降價(jià)處理銷(xiāo)售結(jié)果如下表:降價(jià)次數(shù)一二三銷(xiāo)售件數(shù)1040一搶而光
2024-12-01 12:04