【摘要】不等式的定義:一般地,用符號“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(≤、≥)畫實心點,無等號(<、>=畫空心圈。列不等式注意找到問題中不等關系的詞正數(shù)
2024-11-18 21:53
【摘要】不等式不等式不等式不等式不等式的應用.不等式的應用性質1(傳遞性)如果ab,bc,則ac.性質2(加法法則)如果ab,那么a+cb+c.性質3(乘法法則)如果a&
2024-12-03 05:33
【摘要】第一篇:57均值不等式與不等式的實際應用 學案五十七:均值不等式與不等式的實際應用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(小)值...
2024-11-03 14:01
【摘要】第二十二講不等式的應用100件某種商店,為使這批貨物盡快脫手,該商店采取了如下銷售方案,先將價格提高到原來的,再作三次降價處理:第一次降價30%,標出“虧本價”;第二次降價30%,標出“破產價”第三次降價30%,標出“跳樓價”.三次降價處理銷售結果如下表:降價次數(shù)一二三銷售件數(shù)1040一搶而光
2024-12-01 12:04
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-29 01:36
2025-08-02 19:51
【摘要】不等式的文字應用制作人:黃宇寧知識復習不等式的基本性質:⑴不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號方向不變.即:如果ab,那么a+cb+c,a-cb-c;⑵不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.即:如果a&g
2025-05-14 18:36
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-24 13:38
【摘要】合作學習(1)已知a<b和b<c,在數(shù)軸上表示如圖5-9.由數(shù)軸上a和c的位置關系,你能得出什么結論?你那舉幾個具體的例子說明嗎?不等式的基本性質1若a<b和b<c,則a<c.(不等式的傳遞性)你能發(fā)現(xiàn)不等式有什么性質嗎?(2)觀察:用
2024-11-19 02:27
【摘要】不等式的應用高三備課組一、內容歸納1知識精講:在前面幾節(jié)課學習的不等式的性質、證明和解不等式的基礎上運用不等式的的知識和思想方法分析、解決一些涉及不等式關系的問題.2重點難點:善于將一個表面上看來并非是不等式的問題借助不等式的有關部門知識來解決.3思維方式:合理轉化;正
2024-11-21 08:50
【摘要】§不等式的實際應用哪一種更合算呢請問選擇移動還是聯(lián)通?若老王每月本地電話通話時間約為120分鐘,長途電話60分鐘,請幫他選擇一種最合算的手機卡老王購買了一部手機,預使用中國移動“神州行”卡或加入聯(lián)通的130網(wǎng),經(jīng)調查其收費標準見下表:網(wǎng)絡月租費本地話費長途話費聯(lián)
2024-10-11 19:11
【摘要】《不等式的運用》一、常用不等式的解法(一)基本知識點:1.一次不等式:0,0,0axbaaa?????分三種情況求解2.二次不等式:判別式△=b2-4ac△0△=0△0方程ax2+bx+c=0的解兩不等實根x1、x2
【摘要】精品資源不等式的實際應用知識梳理:1、不等式應用題,題源豐富,綜合性強,是高考應用題命題的重點內容之一;這類應用題常常與函數(shù)、數(shù)列、立體幾何、解析幾何等相綜合,難度可大可小,具有一定的彈性;2、利用不等式解決實際應用問題關鍵是建立問題的數(shù)學模型或轉化為相應的不等式(組);3、解決不等式應用題的三個步驟;一、訓練反饋:1(2004上海卷理16)、某地2004年第一季度應
2025-07-03 19:24
【摘要】2020屆高考數(shù)學復習強化雙基系列課件42《不等式的應用》一、內容歸納1知識精講:在前面幾節(jié)課學習的不等式的性質、證明和解不等式的基礎上運用不等式的的知識和思想方法分析、解決一些涉及不等式關系的問題.2重點難點:善于將一個表面上看來并非是不等式的問題借助不等式的有關部門知識來解決.3思維方式:合理轉化;正
2024-11-23 08:50
【摘要】第一篇:均值不等式的應用 均值不等式的應用 教學目標: 教學重點:應用教學難點:應用 教學方法:講練結合教 具:多媒體教學過程 一、復習引入: ,平均不等式:調和平均數(shù)≤幾何平均數(shù)≤...
2024-10-27 19:15