【摘要】函數(shù)單調(diào)性和奇偶性專題1.知識點(diǎn)精講:一、單調(diào)性:一、函數(shù)單調(diào)性的定義及性質(zhì)(1)定義對于給定區(qū)間上的函數(shù),如果對任意,當(dāng),都有,那么就稱在區(qū)間上是增函數(shù);當(dāng),都有,那么就稱在區(qū)間上是減函數(shù).與之相等價的定義:⑴,〔或都有〕則說在這個區(qū)間上是增函數(shù)(或減函數(shù))。其幾何意義為:增(減)函數(shù)圖象上的任意兩點(diǎn)連線的斜率都大于(或小于)0。(2)函數(shù)的單調(diào)區(qū)間
2025-04-02 12:16
【摘要】函數(shù)的單調(diào)性和奇偶性(一)閱讀課本P58-P59,回答下列問題1、增函數(shù),減函數(shù)的定義;2、單調(diào)性,單調(diào)區(qū)間的定義.3、函數(shù)圖象如下圖,說出單調(diào)區(qū)間及其單調(diào)性.xy練習(xí)一1、求下列函數(shù)的單調(diào)區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2024-08-30 20:29
2024-11-18 20:13
【摘要】函數(shù)單調(diào)性、奇偶性練習(xí)一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-06-27 20:37
【摘要】單元測試(2)一、選擇題:(每小題4,共40分)1.下列哪組中的兩個函數(shù)是同一函數(shù)()A.2()yx?與yx?B。33()yx?與yx?C.2yx?與2()yx?D。33yx?與
2024-12-15 12:23
【摘要】難點(diǎn)8關(guān)于奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)和熱點(diǎn)內(nèi)容之一,,掌握基本方法,形成應(yīng)用意識.●難點(diǎn)磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)0,設(shè)不等式解
2025-04-13 05:16
【摘要】函數(shù)的奇偶性、映射一、選擇題:(每小題6分,共36分)。1.由下列命題:①偶函數(shù)的圖像一定和y軸相交;②奇函數(shù)圖像一定經(jīng)過原點(diǎn);③既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是????0fxxR??;④偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于原點(diǎn)對稱。其中正確的是
【摘要】1.已知函數(shù)對任意,總有,且當(dāng)(1)求證在R上是減函數(shù)(2)求在[-3,3]上的最大值和最小值2.函數(shù)對任意,都有,并且當(dāng)(1)求證在R上是增函數(shù)(2)若3.4.(1)求(2)求證在定義域上是增函數(shù)(3)如果求滿足不等式的x的取值范圍(4)解不等式
2025-04-03 02:32
【摘要】函數(shù)的性質(zhì)的運(yùn)用1.若函數(shù)是奇函數(shù),則下列坐標(biāo)表示的點(diǎn)一定在函數(shù)圖象上的是()A.B.C.D.2.已知函數(shù)是奇函數(shù),則的值為()A.B.C.D.3.已知f(x)是偶函數(shù),g(x)是奇函數(shù),若,則f(x)的解析式為_______.4.已知函數(shù)f(x)為偶函數(shù),且其圖象與x軸有四個交點(diǎn),
【摘要】典型例題函數(shù)的單調(diào)性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間.解:函數(shù)圖像如下圖所示,當(dāng)x≥0時,y=-x2+2x+3=-(x-1)2+4;當(dāng)x<0時,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評析?函數(shù)單調(diào)性是對某個
2025-04-02 12:17
【摘要】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關(guān)于原點(diǎn)對稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點(diǎn)有定義(3)任一個定義域關(guān)于原點(diǎn)對稱的函數(shù)一定可以表示成一個奇函數(shù)和一個偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個值,若時有,稱為上增函數(shù),若時有,稱為上
2025-05-25 01:41
【摘要】1、已知的定義域為R,且對任意實數(shù)x,y滿足,求證:是偶函數(shù)。2、已知f(x)是定義在(-∞,+∞)上的不恒為零的函數(shù),且對定義域內(nèi)的任意x,y,f(x)都滿足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判斷f(x)的奇偶性,并說明理由.3、函數(shù)f(x)對任意x?y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x0時,
2025-06-28 04:49
【摘要】增函數(shù),減函數(shù)的定義:設(shè)函數(shù)f(x)的定義域為I如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x,x,當(dāng)xx時,都有f(x)f(x),那么就說f(x)在這個區(qū)間上是增函數(shù).111222如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x,x,當(dāng)x
2024-10-28 11:54
【摘要】3高一數(shù)學(xué)函數(shù)練習(xí)題一、求函數(shù)的定義域1、求下列函數(shù)的定義域:⑴⑵⑶2、設(shè)函數(shù)的定義域為,則函數(shù)的定義域為___;函數(shù)的定義域為________;3、若函數(shù)的定義域為,則函數(shù)的定義域是;函數(shù)的定義域為。4、知函數(shù)的定義域為,且函數(shù)的定義域存在,求實數(shù)的取值范圍。
2025-04-03 02:03
【摘要】 函數(shù)的單調(diào)性和奇偶性一、目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo): 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ; .重點(diǎn)、難點(diǎn): ?。弧 ?二、知識要點(diǎn)梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域為A,區(qū)間 如果對于M內(nèi)的任意兩個自變量的值x1、x2,當(dāng)x1<x2時,都
2024-08-20 02:38