【摘要】空間幾何體三視圖與外接球(例題)
2025-04-03 06:42
【摘要】高考外接球與內(nèi)接球?qū)n}練習(xí)(1)正方體,長(zhǎng)方體外接球1.如圖所示,已知正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為2,長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在棱DD1上運(yùn)動(dòng),另一端點(diǎn)N在正方形ABCD內(nèi)運(yùn)動(dòng),則MN的中點(diǎn)的軌跡的面積為( ?。〢.B.C.D.2.正方體的內(nèi)切球與其外接球的體積之比為( )A.B.
2025-04-26 13:06
【摘要】簡(jiǎn)單幾何體的外切球與內(nèi)接球的計(jì)算一、棱柱與球1、正棱柱具備內(nèi)切球的條件:側(cè)棱長(zhǎng)與底面邊長(zhǎng)有一定的運(yùn)算關(guān)系。分析正三、四、六棱柱具備內(nèi)切球時(shí),基側(cè)棱長(zhǎng)與底面邊長(zhǎng)的比例。其中正三棱柱的側(cè)棱與底面連長(zhǎng)比值為3:1,正四棱柱的側(cè)棱與底面連長(zhǎng)的比值為1:1;正六棱柱的側(cè)棱與底面連長(zhǎng)的比值為3:3.2、直棱柱的外接球球心位置:上下兩底中心連線的中點(diǎn)。[分析原因]注:長(zhǎng)方體和正方體的外
2025-06-29 07:10
【摘要】幾何體的外接球一、球的性質(zhì)回顧如右圖所示:O為球心,O’為球O的一個(gè)小圓的圓心,則此時(shí)OO’垂直于圓O’所在平面。二、常見平面幾何圖形的外接圓外接圓半徑(r)的求法1、三角形:(1)等邊三角形:等邊三角形也即正三角形,其滿足正多邊形的基本特征:五心合一,即內(nèi)心、外心、重心、垂心、中心重合于一點(diǎn)。內(nèi)心:內(nèi)切圓圓心,各角角平分線的交點(diǎn);外心:外
2025-04-02 12:12
【摘要】幾何體的外接球?qū)>氄晥D2俯視圖2側(cè)視圖1.一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積為()A.B.C.D.2.正方體內(nèi)切球和外接球半徑的比為()A.B.C.D.1:24.已知一個(gè)
【摘要】圓夢(mèng)教育中心立體幾何中的“內(nèi)切”與“外接”問題的探究1球與柱體規(guī)則的柱體,如正方體、長(zhǎng)方體、正棱柱等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過球的半徑和棱柱的棱產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.球與正方體如圖1所示,正方體,設(shè)正方體的棱長(zhǎng)為,為棱的中點(diǎn),為球的球心。常見組合方式有三類:一是球?yàn)檎襟w的內(nèi)切球,截面圖為正方形和其內(nèi)切
2025-04-03 06:43
【摘要】一、學(xué)情分析:1、學(xué)生知識(shí)結(jié)構(gòu)分析:初中七年級(jí)上認(rèn)識(shí)了直線、射線、線段、角、同時(shí)能夠制長(zhǎng)方體形狀的紙盒;七年級(jí)下學(xué)習(xí)了平面內(nèi)兩條平行直線的位置關(guān)系;八年級(jí)上學(xué)習(xí)了三角形全等;八年級(jí)下學(xué)習(xí)了平面內(nèi)的特殊四邊形;九年級(jí)上學(xué)習(xí)了與圓有關(guān)的位置關(guān)系及多邊形與圓;九年級(jí)學(xué)習(xí)了三角形相似、投影與三視圖;從知識(shí)上具備了學(xué)習(xí)立體幾何所需的平面幾何基礎(chǔ)。2、學(xué)生非智力因素分析:前面從老師已經(jīng)
2024-09-02 16:48
【摘要】立體幾何專題四????121定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體稱為棱柱.特殊棱柱直棱柱:側(cè)棱垂直于底面的棱柱叫做直
2024-11-23 05:49
【摘要】空間幾何體的結(jié)構(gòu)、三視圖、直觀圖立體幾何復(fù)習(xí)建議1、掌握三基(1)基本知識(shí)(2)基本技能:識(shí)圖、作圖(3)基本思想和方法:轉(zhuǎn)化與化歸、運(yùn)動(dòng)變化2、充分利用模型3、熟記一些重要結(jié)論4、樹立自信心立體幾何復(fù)習(xí)要領(lǐng)立體幾何點(diǎn)線面,做圖識(shí)圖是關(guān)鍵;理解概念和定理,圖形處理割補(bǔ)添;學(xué)會(huì)分析找思路,一作二證
【摘要】空間幾何體的結(jié)構(gòu)一、概念只考慮物體的形狀和大小,而不考慮其他因素,由這些物體抽象出來的空間圖形叫做空間幾何體。多面體:一般地,我們把由若干個(gè)平面多邊形圍成的幾何體叫做多面體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。旋轉(zhuǎn)體:我們把由一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體。
2025-07-03 05:45
【摘要】《空間幾何體的結(jié)構(gòu)》在現(xiàn)實(shí)生活中,我們的周圍存在著各種各樣的物體,它們具有不同的幾何形狀??臻g幾何體如果我們只考慮物體的形狀和大小,而不考慮其它因素,那么由這些物體抽象出來的空間圖形就叫做空間幾何體。請(qǐng)觀察下圖中的物體我要問這些圖片中的物體具有什么樣的幾何結(jié)構(gòu)特征?你能對(duì)它們進(jìn)行分類嗎?我來
2024-12-06 15:30
【摘要】空間幾何體的結(jié)構(gòu)(1)如果我們只考慮物體的形狀和大小,而不考慮其它因素,那么由這些物體抽象出來的空間圖形就叫做空間幾何體。一般地,我們把由若干個(gè)平面多邊形圍成的幾何體叫做多面體。(2),(5),(7),(9),(13),(14),(15),(16)這些物體都具有多面體的形狀。
2024-12-06 13:42
【摘要】空間幾何體的結(jié)構(gòu)多面體:一般地,我們把由若干個(gè)平面多邊形圍成的幾何體叫做多面體.旋轉(zhuǎn)體:一般地,我們把由一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體.這條定直線叫做旋轉(zhuǎn)體的軸.1、定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍
2025-05-12 08:37
【摘要】高二年級(jí)數(shù)學(xué)教學(xué)案(2020年9月29日)周次5課題空間幾何體的體積2課時(shí)授課形式新授主編審核教學(xué)目標(biāo)1.求空間幾何體的體積。2.常與函數(shù)、三視圖、線面位置關(guān)系等知識(shí)相結(jié)合求最值。3.球與正方體等簡(jiǎn)單幾何體的“內(nèi)切”,“外接”關(guān)系。(易混點(diǎn))重點(diǎn)難點(diǎn)1.了解柱、錐、臺(tái)體的體積
2024-12-02 00:26
【摘要】高一數(shù)學(xué)學(xué)案空間幾何體的表面積教學(xué)目的:(1)正棱柱正棱臺(tái)正棱錐的概念,圓柱圓錐圓臺(tái)側(cè)面積(2)用這些公式解決問題教學(xué)重點(diǎn):正棱錐、正棱柱、正棱臺(tái)的理解,柱錐臺(tái)的側(cè)面積計(jì)算教學(xué)難點(diǎn):側(cè)面積公式的應(yīng)用教學(xué)方法:教學(xué)過程:一、什么是多面體?多面體的側(cè)面展開圖二、新授:1、正棱柱:正棱錐:正棱臺(tái):側(cè)面積公式的推導(dǎo),
2024-10-10 16:40