【摘要】冪運算性質(zhì)同底數(shù)冪的乘法:底數(shù)不變,指數(shù)相加同底數(shù)冪的除法:底數(shù)不變,指數(shù)相減冪的乘方:底數(shù)不變,指數(shù)相乘積的乘方:等于各因數(shù)分別乘方的積商的乘方(分式乘方):分子分母分別乘方,指數(shù)不變分?jǐn)?shù)指數(shù)冪:給定正實數(shù)a,對于任意給定的整數(shù)m,n(m,n互素),存在唯一的正實數(shù)b,使得,我們把b叫做a的次冪,記作,那么它就是分
2025-05-25 06:58
【摘要】空高二年級數(shù)學(xué)講義:奇妙的數(shù)學(xué)快樂的人生高二數(shù)學(xué)組班級_____姓名________座位號:數(shù)學(xué)學(xué)考復(fù)習(xí)卷:課題:指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)一、三維目標(biāo):1、通過具體實例,直觀了解函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解函數(shù)的概念。通過具體實例了解函數(shù)的圖象和性質(zhì),體會函數(shù)的變化規(guī)律及蘊含其中的對稱
2025-07-04 01:32
【摘要】圓夢教育2012個性化輔導(dǎo)教案課題指數(shù)函數(shù)與對數(shù)函數(shù)授課教師授課時間學(xué)生教學(xué)目標(biāo)1.理解指數(shù)函數(shù)與對數(shù)函數(shù)的定義;2.能簡單的計算指數(shù)函數(shù)與對數(shù)函數(shù);3.
2025-07-04 01:29
【摘要】四隊中學(xué)教案紙(備課人:陳敏敏學(xué)科:高三數(shù)學(xué))備課時間教學(xué)課題指數(shù)函數(shù)與對數(shù)函數(shù)教時計劃1教學(xué)課時1教學(xué)目標(biāo)1、熟練掌握指數(shù)函數(shù)與對數(shù)函數(shù)的概念、圖像和性質(zhì),重點抓住底數(shù)對函數(shù)性質(zhì)影響2、理解指數(shù)函數(shù)和對數(shù)函數(shù)互為反函數(shù)及其它們的圖像和性質(zhì)的內(nèi)在聯(lián)系3、利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決問題重點
2024-09-01 13:00
【摘要】指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)練習(xí)1、分?jǐn)?shù)指數(shù)冪1.2.3.C.D.5.用根式的形式表示下列各式(1)=(2)=7.用分?jǐn)?shù)指數(shù)冪的形式表示下列各式:(1)=(2)
2025-04-03 02:35
【摘要】冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)·反函數(shù)?教學(xué)目標(biāo)1.使學(xué)生正確理解反函數(shù)的概念,初步掌握求反函數(shù)的方法.2.培養(yǎng)學(xué)生分析問題、解決問題的能力及抽象概括的能力.3.使學(xué)生思維的深刻性進(jìn)一步完善.教學(xué)重點與難點教學(xué)重點是求反函數(shù)的技能訓(xùn)練.教學(xué)難點是反函數(shù)概念的理解.教學(xué)過程設(shè)計一、揭示課題師:今天我們將學(xué)習(xí)函數(shù)中一個重要的概念——反函數(shù)
2024-08-19 15:04
【摘要】一、指數(shù)函數(shù)1.形如的函數(shù)叫做指數(shù)函數(shù),其中自變量是,函數(shù)定義域是,值域是..,函數(shù)單調(diào)性為在上時增函數(shù);當(dāng)時,函數(shù)單調(diào)性是在上是減函數(shù).二、對數(shù)函數(shù)1.對數(shù)定義:一般地,如果()的次冪等于,即,那么就稱是以為底的對數(shù),記作,其中,叫做對數(shù)的底數(shù),叫做真數(shù)。著重理解對數(shù)式與指數(shù)式之間的相互轉(zhuǎn)化關(guān)系,理解,與所表示的是三個量之間的同一個關(guān)系。
2025-04-26 01:30
【摘要】第三章 指數(shù)函數(shù)和對數(shù)函數(shù)§1 正整數(shù)指數(shù)函數(shù)§2 指數(shù)擴充及其運算性質(zhì)1.正整數(shù)指數(shù)函數(shù)函數(shù)y=ax(a0,a≠1,x∈N+)叫作________指數(shù)函數(shù);形如y=kax(k∈R,a0,且a≠1)的函數(shù)稱為________函數(shù).2.分?jǐn)?shù)指數(shù)冪(1)分?jǐn)?shù)指數(shù)冪的定義:給定正實數(shù)a,對于任意給定的整數(shù)m,n(m,n互素),存在唯一的正實數(shù)
【摘要】2012屆高考數(shù)學(xué)專題復(fù)習(xí)專題1——指數(shù)函數(shù)、對數(shù)函數(shù)(文科),那么的取值范圍是 (A) (B) (C) (D),當(dāng)時,設(shè)則 (A) (B) ?。–) (D)3、設(shè)f(x)=,則的定義域為A.B.(-4,-1)(1,4)C.(-2,-1)(1,2)D.(-4,-2)(2,
2024-08-19 17:16
【摘要】定義域為(0,+∞).值域為R過點(1,0)減函數(shù)增函數(shù)01y=logax(a0且a≠1)定義域為R.值域為(0,+∞)性質(zhì)過點(0,1)減函數(shù)增函數(shù)圖象01y=ax(a
2024-10-28 19:13
【摘要】指數(shù)函數(shù)和對數(shù)函數(shù)·換底公式·例題?例1-6-38?log34·log48·log8m=log416,則m為??????????????????
2025-01-23 00:49
【摘要】(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))【專題測試】1、下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是A. B.C. D.2、已知是定義在R上的函數(shù),且恒成立,當(dāng)時,,則當(dāng)時,函數(shù)的解析式為A.B.C.D.3、函數(shù),則的值為A.2 B.8 C
【摘要】......指數(shù)函數(shù)與對數(shù)函數(shù)專項練習(xí)>0,f(x)=是R上的奇函數(shù).(1)求a的值;(2)試判斷f(x)的反函數(shù)f-1(x)的奇偶性與單調(diào)性.解:(1)因為在R上是奇函數(shù),所以,(2)
2025-04-26 12:56
【摘要】函數(shù)函數(shù)函數(shù)函數(shù)問題1:指數(shù)函數(shù)y=ax與對數(shù)函數(shù)y=logax(a0,a≠1)有什么關(guān)系?稱這兩個函數(shù)互為反函數(shù)y=axx=logayy=logax指數(shù)換對數(shù)交換x,yy=3x+5交換x,y35??yx移項35??xy指數(shù)函數(shù)y=ax(a0
2024-12-05 12:38
【摘要】對數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學(xué)的內(nèi)容.有了指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-27 02:15