【摘要】初中幾何經(jīng)典試題:初中幾何經(jīng)典難題總結(jié)
2025-04-02 12:33
【摘要】1、證明線段相等或角相等兩條線段或兩個角相等是平面幾何證明中最基本也是最重要的一種相等關(guān)系。很多其它問題最后都可化歸為此類問題來證。證明兩條線段或兩角相等最常用的方法是利用全等三角形的性質(zhì),其它如線段中垂線的性質(zhì)、角平分線的性質(zhì)、等腰三角形的判定與性質(zhì)等也經(jīng)常用到。例1.已知:如圖1所示,中,。求證:DE=DF分析:由是等腰直角三角形可知,
2025-07-03 20:10
【摘要】初中幾何證明題一.,點(diǎn)是中點(diǎn),,求證:,在中,,,,點(diǎn)是上一點(diǎn),連結(jié),過點(diǎn)做交于.探究與的數(shù)量關(guān)系.,在中,,點(diǎn)在上,點(diǎn)在的延長線上,且,交于點(diǎn).探究與的數(shù)量關(guān)系.
2025-04-02 12:34
【摘要】第一篇:初二幾何證明 24.(1)如圖(1),△ABC是等邊三角形,D、E分別是AB、BC上的點(diǎn),且BD=CE,連接AE、,并直接寫出∠APD的度數(shù);= (2)如圖(2),Rt△ABC中,∠B=9...
2024-11-16 05:38
【摘要】初二上證明題0011.如圖,DE∥BC,∠D+∠B=180°.求證:AB∥CD.2.如圖,AB∥CD,GH分別與AB、CD相交于點(diǎn)E、F,EM平分∠AEG,F(xiàn)N平分∠CFG.求證:EM∥FN.3.如圖,OB=BC,OC平分∠AOB.求證:AO∥BC.4.B如圖,AB∥CD,∠A+∠E=∠AM
2025-04-02 12:38
【摘要】八年級(下)數(shù)學(xué)幾何ANFECDMB1、已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點(diǎn),AD、BC的延長線交MN于E、F.求證:∠DEN=∠F.PCGFBQADE2、如圖,分別以△ABC的AC和BC為一邊,在△ABC的外側(cè)作正方形ACDE和正方形CBF
2025-04-02 02:13
【摘要】專業(yè)資料分享、F、G、H,則四面體EFGH的表面積與四面體ABCD的表面積的比值是( ?。〢)B)C)D)如圖,連接AF、AG并延長與BC、CD相交于M、N,由于F、G分別是三角形的重心,
2025-04-03 02:03
【摘要】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)一點(diǎn),∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2
2025-04-03 01:21
【摘要】ADBCEF圖11、如圖1,已知AB=DC,AD=BC,E、F在DB上兩點(diǎn)且BF=DE,若∠AEB=120°,∠ADB=30°,則∠BCF=____。2、在等腰△ABC中,AB=AC=14cm,E為AB中點(diǎn),DE⊥AB于E,交AC于D,若△BDC的周長為24cm,則底邊BC=____。ACEDB3
2025-04-13 03:51
【摘要】1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;AFDEBC(2)延長BE交AD于F,當(dāng)∠BED=120°時,
【摘要】第一篇:初二幾何證明題 1如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于F,且AF=DCCF.(1)求證:D是BC的中點(diǎn);(2)如果AB=ACADCF的...
2024-10-21 22:41
【摘要】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-10-22 10:22
【摘要】初一幾何典型例題1、如圖,∠AOB=90°,OM平分∠AOB,將直角三角尺的頂點(diǎn)P在射線OM上移動,兩直角分別與OA,OB相較于C,D兩點(diǎn),則PC與PD相等嗎?試說明理由。PC=PD證明:作PE⊥OA于點(diǎn)E,PF⊥OB于點(diǎn)F∵OM是角平分線∴PE=PF∠EPF=90°∵∠CPD=90°∴∠CPE=∠DPF∵∠PEC=∠PFD=
2025-04-05 01:22
【摘要】習(xí)題1如圖,P為等邊△ABC內(nèi)一點(diǎn),∠APB=113°,∠APC=123°,試說明:以AP、BP、CP為邊長可以構(gòu)成一個三角形,并確定所構(gòu)成三角形的各內(nèi)角的度數(shù).解:將△APC繞點(diǎn)A順時針旋轉(zhuǎn)60°得△AQB,則△AQB≌△APC∴BQ=CP,AQ=AP,∵∠1+∠3=60°,∴△APQ是等邊三角形,∴QP=AP,∴△QBP就是
2024-08-20 04:08
【摘要】最新中考數(shù)學(xué)幾何證明(平行四邊形,菱形矩形正方形)經(jīng)典1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;AFDE
2024-08-08 18:35