【摘要】二次函數(shù)的解析式求法?求二次函數(shù)的解析式這類題涉及面廣,靈活性大,技巧性強(qiáng),筆者結(jié)合近幾年來(lái)的中考試題,總結(jié)出幾種解析式的求法,供同學(xué)們學(xué)習(xí)時(shí)參考。一、三點(diǎn)型例1已知一個(gè)二次函數(shù)圖象經(jīng)過(guò)(-1,10)、(2,7)和(1,4)三點(diǎn),那么這個(gè)函數(shù)的解析式是_______。分析已知二次函數(shù)圖象上的三個(gè)點(diǎn),可設(shè)其解析式為y=ax+bx+c
2025-06-25 00:12
【摘要】待定系數(shù)法求解析式一、知識(shí)要點(diǎn)近年高頻考點(diǎn)中考頻率所占分值1、用待定系數(shù)法求解二次函數(shù)解析式êêêêê5~10分1、設(shè)一般式y(tǒng)=ax2+bx+c_用待定系數(shù)法求二次函數(shù)解析式2、設(shè)頂點(diǎn)式y(tǒng)=a(x-h(huán))2+k_用待定系數(shù)法求二次函數(shù)
2025-04-02 06:26
【摘要】二次函數(shù)圖像平移、旋轉(zhuǎn)總歸納一、二次函數(shù)的圖象的平移,先作出二次函數(shù)y=2x2+1的圖象①向上平移3個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2x2+4;②向下平移4個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2x2-3;③向左平移5個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2(x+5)2+1;④向右平移6個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2(x-6)2+1.由此可以歸納二次函數(shù)y=ax2
【摘要】例(-1,2)、(2,11)、(1,6)在某二次函數(shù)的拋物線上,求該拋物線的解析式方法一:已知拋物線上的任意三點(diǎn),可設(shè)為一般式,再用待定系數(shù)法求解。例(2,4),且可由平移得到,求該拋物線的解析式1)3(212++=xy
2024-10-28 14:46
【摘要】二次函數(shù)的解析式1、了解二次函數(shù)的幾種表達(dá)式:2、能根據(jù)一點(diǎn)、兩點(diǎn)、三點(diǎn)的坐標(biāo)求出二次函數(shù)的表達(dá)式;3、根據(jù)二次函數(shù)的表達(dá)式解決有關(guān)問(wèn)題.4、提高學(xué)生的閱讀理解能力,收集處理信息能力,運(yùn)用知識(shí)能力,解決實(shí)際問(wèn)題能力,探索、發(fā)現(xiàn)問(wèn)題能力.1、求下列滿足條件的二次函數(shù)的解析式:
2024-12-01 12:03
【摘要】專題訓(xùn)練求二次函數(shù)的解析式一、已知三點(diǎn)求解析式=ax2+bx+c經(jīng)過(guò)(-1,-22),(0,-8),(2,8)三點(diǎn),求它的開(kāi)口方向、對(duì)稱軸和頂點(diǎn).(0,0),(-1,-1),(1,9)三點(diǎn).求這個(gè)二次函數(shù)的解析式.3.已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-1,-6),(1,-2)和(2,3),求這個(gè)二次函數(shù)的解析式,并求它的開(kāi)口方向、對(duì)稱軸
2025-06-24 23:56
【摘要】《二次函數(shù)的圖象》教案一、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)1.使學(xué)生會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)的圖象;2.使學(xué)生會(huì)用配方法確定拋物線的頂點(diǎn)和對(duì)稱軸(對(duì)于不升學(xué)的學(xué)生,只要求會(huì)用公式確定拋物線的頂點(diǎn)和對(duì)稱軸);3.使學(xué)生進(jìn)一步理解二次函數(shù)與拋物線的有關(guān)概念;4.使學(xué)生會(huì)用待定系數(shù)法由已知圖像上三點(diǎn)的坐標(biāo)求二次函數(shù)的解析式.(二)能力目標(biāo)
2025-06-25 00:27
【摘要】第一篇:二次函數(shù)習(xí)題及答案 基礎(chǔ)達(dá)標(biāo)驗(yàn)收卷 一、選擇題: 1.(2003?大連)拋物線y=(x-2)2+3的對(duì)稱軸是().=-3 =3 =-2 =2 2.(2004?重慶)二次函數(shù)y=a...
2024-10-17 21:14
【摘要】1.知識(shí)梳理(一).二次函數(shù)用配方法可化成:的形式,其中例題1:拋物線的頂點(diǎn)坐標(biāo)為(1,3),則b=,c=.,再向右平移1個(gè)單位,得到,則a=,b=,c=.(二).二次函數(shù)的對(duì)稱軸、頂點(diǎn)、最值,與坐標(biāo)軸交點(diǎn)(技法:如果解析式為頂點(diǎn)式,則對(duì)稱軸x=h,頂點(diǎn)(h,k),最值:當(dāng)x=h函數(shù)有最
2025-07-02 13:57
【摘要】二、填空題1、(2009年北京市)若把代數(shù)式化為的形式,其中為常數(shù),則= .2、(2009年安徽)已知二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn)及點(diǎn)(,),且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,則該二次函數(shù)的解析式為3、已知二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn)及點(diǎn)(,),且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,則該二次函數(shù)的解析式為
2025-07-02 13:56
【摘要】二次函數(shù)的解析式1、了解二次函數(shù)的幾種表達(dá)式:2、能根據(jù)一點(diǎn)、兩點(diǎn)、三點(diǎn)的坐標(biāo)求出二次函數(shù)的表達(dá)式;3、根據(jù)二次函數(shù)的表達(dá)式解決有關(guān)問(wèn)題.4、提高學(xué)生的閱讀理解能力,收集處理信息能力,運(yùn)用知識(shí)能力,解決實(shí)際問(wèn)題能力,探索、發(fā)現(xiàn)問(wèn)題能力.一、教學(xué)目標(biāo):1、舉例說(shuō)明二次函數(shù)有幾種表達(dá)式:2、請(qǐng)舉例說(shuō)明如何根據(jù)一點(diǎn)、兩點(diǎn)、三點(diǎn)
【摘要】二次函數(shù)的圖象和性質(zhì)一、選擇題1.(2011湖北鄂州,15,3分)已知函數(shù),則使y=k成立的x值恰好有三個(gè),則k的值為()A.0 B.1 C.2 D.3【答案】D2.(2011廣東廣州市,5,3分)下列函數(shù)中,當(dāng)x0時(shí)y值隨x值增大而減小的是().A.y=x2 B.y=x-1 C.y=x D.y=
【摘要】求二次函數(shù)解析式:綜合題 例1已知拋物線與x軸交于A(-1,0)、B(1,0),并經(jīng)過(guò)M(0,1),求拋物線的解析式. 分析:本題可以利用拋物線的一般式來(lái)求解,但因A(-1,0)、B(1,0)是拋物線與x軸的交點(diǎn),因此有更簡(jiǎn)捷的解法. 如果拋物線y=ax2+bx+c與x軸(即y=0)有交點(diǎn)(x1,0),(x2,0).那么顯然有 ∴x1、x2是一元二次
2025-06-28 23:52
【摘要】騰飛家教二次函數(shù)解析式的8種求法二次函數(shù)的解析式的求法是數(shù)學(xué)教學(xué)的難點(diǎn),學(xué)不易掌握.他的基本思想方法是待定系數(shù)法,根據(jù)題目給出的具體條件,設(shè)出不同形式的解析式,找出滿足解析式的點(diǎn),求出相應(yīng)的系數(shù).下面就不同形式的二次函數(shù)解析式的求法歸納如下:一、定義型:此類題目是根據(jù)二次函數(shù)的定義來(lái)解題,必須滿足二個(gè)條件:1、a≠0;2、x的最高次數(shù)為2次.例1、若y=(m2
2025-04-13 04:25
【摘要】第一篇:二次函數(shù)解析式專項(xiàng)練習(xí) 二次函數(shù)解析式專項(xiàng)練習(xí) 一般式:y=ax2+bx+c(a≠0) 頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0),其中(h,k)是拋物線的頂點(diǎn)坐標(biāo) 兩根式:y=a(x-...
2024-10-24 21:01