【摘要】如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系計算二重積分[X-型])(2xy??abD)(1xy??Dba)(2xy??)(1xy??為曲頂
2025-01-27 17:12
【摘要】利用極坐標計算二重積分教學(xué)目的:利用極坐標計算二重積分教學(xué)重點:二重積分化為極坐標形式教學(xué)難點:用極坐標表示平面區(qū)域由扇形面積公式可知其中第i個小區(qū)域的面積為設(shè)?????.sin,cos??ryrx,則AoDi??irr?iirrr???ii??????i???iiiiii
2024-10-28 12:04
【摘要】一、利用直角坐標系計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(1)如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系(rightanglecoordinatesys
2024-09-11 12:45
【摘要】第二節(jié)二重積分的計算法教學(xué)目的:熟練掌握二重積分的計算方法教學(xué)重點:利用直角坐標和極坐標計算二重積分教學(xué)難點:化二重積分為二次積分的定限問題教學(xué)內(nèi)容:利用二重積分的定義來計算二重積分顯然是不實際的,二重積分的計算是通過兩個定積分的計算(即二次積分)來實現(xiàn)的.一、利用直角坐標計算二重積分我們用幾何觀點來討論二重積分的計算問題.討論中,我們假定;假定積分區(qū)域
2025-04-16 07:56
【摘要】機動目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案第二節(jié)一、利用直角坐標計算二重積分二重積分的計算法二、利用極坐標計算二重積分三、二重積分的換元法第十章機動目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案xbad]
2025-05-10 18:15
【摘要】第二節(jié)、二重積分的性質(zhì)假設(shè)以下各積分存在性質(zhì)1?????DDdyxfkdyxkf??),(),(k為常數(shù)性質(zhì)2?????????DDDdyxgDdyxfdyxgyxf???),(),()],(),([性質(zhì)3(可加性)???2121,DDDDD??且若(除分界線)??????
2024-10-23 12:29
【摘要】§二重積分?二重積分的概念?二重積分的性質(zhì)?二重積分的計算?小結(jié)?思考與練習(xí)在這一節(jié),我們將把一元函數(shù)定積分的概念及基本性質(zhì)推廣到二元函數(shù)的定積分,即二重積分,為引出二重積分的概念,我們先來討論兩個實際問題。,平面的閉區(qū)域設(shè)有一立體,它的底是DxOy軸的柱面,線平行于的邊界曲線為準
2024-10-11 19:02
【摘要】上一頁下一頁主頁返回退出上一頁下一頁主頁(一)教學(xué)目的:掌握二重積分的定義和性質(zhì).(二)教學(xué)內(nèi)容:二重積分的定義和性質(zhì).(1)基本要求:掌握二重積分的定義和性質(zhì),二重積分的充要條件,了解有界閉區(qū)域上的連續(xù)函數(shù)的可積性.(2)較高要求:平面點集可求面積的充要條件.上一頁下一頁主頁返回退
2024-11-12 16:40
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題柱體體積=底面積×高特點:平頂.柱體體積=?特點:曲頂.),(yxfz?D1.曲頂柱體的體積一、問題的提出播放求曲頂柱體的體積采用“分割、
2025-03-02 12:14
【摘要】Ozyx第9章重積分二重積分的概念與性質(zhì)2重積分是定積分的推廣和發(fā)展.分割、取近似、求和、取極限.定積分的被積函數(shù)是一元函數(shù),而二重、三重積分的被積函數(shù)重積分有其廣泛的應(yīng)用.序言其同定積分一樣也是某種確定和式的極限,其基本思想是四
2024-08-16 17:21
【摘要】極坐標系下二重積分的計算.??drdrd????Ddxdyyxf),(一、極坐標系下二重積分的一般公式1、面積元素.?drdrdxdy??或i???i??ii??????iirrr???AoDir?.)sin,cos(???Drdrdrrf???2、一般公式
2024-12-17 10:11
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、二重積分的概念二、二重積分的性質(zhì)三、小結(jié)思考題第九章重積分柱體體積=底面積×高特點:平頂.柱體體積=?特點:曲頂.),(yxfz?D1.曲頂柱體的體積一、二重積分的概念播放求曲頂柱體的體積采用“分
2024-10-28 09:33
【摘要】§4二重積分的變量交換教學(xué)重點:二重積分的變量變換(主要為線性變換,(廣義)極坐標變換)教學(xué)內(nèi)容:教學(xué)難點:變量變換后積分限的確定一、二重積分的變量交換公式:.)
【摘要】一、利用直角坐標系計算二重積分第二節(jié)二重積分的計算方法二、利用極坐標計算二重積分AoDi??irr?iirrr???ii??????i???iiiiiirrr????????????2221)(21iiiirrr???????)2(21iiiiirrrr????????2
2024-10-29 21:14
【摘要】第三節(jié)二重積分的應(yīng)用一、曲面的面積二、平面薄片的重心三、平面薄片的轉(zhuǎn)動慣量四、平面薄片對質(zhì)點的引力把定積分的元素法推廣到二重積分的應(yīng)用中:???DdxdyyxfUdUUdyxfdyxdyxfdDUDDU.),(),(.),()
2025-07-29 17:41