【正文】
較 ............................................................................ 22 不同肋間距的比較 ........................................................................ 24 風(fēng)阻計(jì)算 ................................................................................................ 25 雷諾數(shù)計(jì)算 .................................................................................. 25 風(fēng)道阻力計(jì)算 .............................................................................. 25 本章小結(jié) .................................................................................................. 27 第四章 三角肋 CPU 散熱器換熱性能數(shù)值分析 ................................................. 28 概述 ........................................................................................................... 28 幾何模型及計(jì)算單元網(wǎng)格 ....................................................................... 28 模擬結(jié)果與分析 ...................................................................................... 29 不同肋厚的比較 ............................................................................ 29 不同肋高的比較 ............................................................................ 30 東北電力大學(xué)本科畢業(yè)論文 II 不同肋間距的比較 ........................................................................ 32 等截面直肋與三角肋比較分析 .............................................................. 33 結(jié) 論 ................................................................................................................ 35 致 謝 ................................................................................................................ 36 參考文獻(xiàn) ................................................................................................................ 37 第一章 緒 論 1 第一章 緒 論 研究背景和意義 近年來微電子工業(yè)迅猛發(fā)展 , 電子器件的微型化已經(jīng)成為現(xiàn)代電子設(shè)備發(fā)展的主流趨勢(shì) ]1[ 。 a single semiconductor (CPU) ponents, the temperature is increased by 10 ℃ , the system reliability will be reduced by 50%, more than 55% of electronic equipment failure is due to overheating caused. The temperature is too high or too low, CPU can not be stability, performance will be decreased significantly, which will also affect the entire puter system reliability. Intel39。s heat can not shed a timely and reasonable manner, CPU39。 D under the great trend .However, it is pact internal space of the puter39。 關(guān)鍵詞: CPU;散熱;肋片; 數(shù)值模擬 東北電力大學(xué)本科畢業(yè)論文 II Title Structure optimization research of Narrow space cooling ponents Abstract With the development of puter technology, central processing unit (CPU) puting speed of the chip39。 本文采用強(qiáng)迫空冷, 用 CFD 軟件 Fluent 通過其前處理模塊 Gambit 對(duì)所研究的模型進(jìn)行建模,然后 將其導(dǎo)入 Fluent 中,在選擇求解器以及確定邊界條件后進(jìn)行計(jì)算模擬,研究散熱片的散熱性能,對(duì)不同參數(shù)的等截面直肋 和三角肋 散熱片的散熱過程進(jìn)行數(shù)值模擬研究,得到不同參數(shù)下的溫度分布云圖,通過分析不同的肋高、肋厚、肋間距對(duì)散熱片散熱性能的影響,最后確定了散熱片的最佳形狀與 參數(shù) 。 風(fēng)冷散熱是現(xiàn)在最為常見且使用率最高也是最成熟的一種散熱方式,這種散熱方式簡單、直接、性能可靠、技術(shù)成熟、成本最低,可以解決我們通常的散熱需要,因而被普遍使用。我們需要采取適當(dāng)?shù)拇胧┦辜性? CPU 中的熱量及時(shí)地散發(fā)出去、降低其溫度,保證它在正常運(yùn)行的溫度范圍 內(nèi)運(yùn)行, 最高溫度不得超過 85℃ 。用 Intel 公司微處理器研究實(shí)驗(yàn)室負(fù)責(zé)人的話說,高頻處理器產(chǎn)生的熱量簡直就是阻礙它發(fā)展的一堵墻。 研究表明,隨著溫度的增加,其失效率呈指數(shù)增長趨勢(shì);當(dāng) CPU工作溫度降低 1℃ ,也將使失效率降低一個(gè)可觀的量值;單個(gè)半導(dǎo)體( CPU)元件的溫度每升高 10℃ ,系統(tǒng)可靠性將降低 50% ,超過 55%的電子設(shè)備的失效是由于溫度過高引起的。然而,人們對(duì)計(jì)算機(jī)內(nèi)部空間緊湊性的設(shè)計(jì)要求,中央處理器( CPU)的體積越來越小。 畢業(yè)設(shè)計(jì)論文 姓 名: 學(xué) 號(hào): 08 學(xué) 院: 能源與動(dòng)力工程學(xué)院 專 業(yè): 熱能與動(dòng)力工程 題 目: 狹小空間散熱元件結(jié)構(gòu)優(yōu)化研究 2020 年 6 月 摘 要 I 摘 要 隨著計(jì)算機(jī)技術(shù)的發(fā)展,中央處理器( CPU)的運(yùn)算速度提高,芯片的發(fā)熱量猛增到 70W80W。在 2020 年,個(gè)人電腦使用的處理器的主頻速度接近1GHz,散熱量接近 50W,而在 2020 年主流處理器的主頻速度已超過了 3GHz,散熱量接近 100W ,并且在雙核心處理器的研發(fā)下大有翻倍之勢(shì)。高集成度 CPU芯片的性能對(duì)溫度十分敏感,主要失效形式是熱失效,散熱情況的好壞將直接影響到計(jì)算機(jī)工作的穩(wěn)定性,如果 CPU的熱量不能夠及時(shí)合理地散出, CPU的壽命將會(huì)縮短,引起 CPU 性能的 降低甚至損壞。溫度過高或過低, CPU 不能穩(wěn)定工作,性能會(huì)顯著下降,從而也將影響到整個(gè)計(jì)算機(jī)系統(tǒng)的可靠運(yùn)行。為提高系統(tǒng)性能、增強(qiáng)其可靠性和維持 CPU 溫度在合適范圍內(nèi),關(guān)鍵因素是應(yīng)用散熱技術(shù)。因此,對(duì) CPU 的主要冷卻器件散熱片的研究有著重要意義。風(fēng)冷散熱是目前給 CPU 散熱的主要方式。 通過模擬研究發(fā)現(xiàn) : 模擬的最佳參數(shù)與理論 計(jì)算值一致,最佳散熱片類型為肋高 30mm,肋厚 4mm,肋間距 6mm的等截面直肋。s heat soared to 70W80W. In 2020, the personal puter used by the processor speed, close to 1GHz, heat dissipation close to 50W, while the mainstream in 2020, processor speed, more than a 3GHz, heat dissipation close to 100W, and in dualcore processors doubling of R amp。s design requirements, central processing unit (CPU) get smaller and smaller. Highly integrated CPU chip, the property is very sensitive to temperature, the main failure form of heat failure, good or bad cooling conditions will directly affect the stability of the puter work, if the CPU39。s life expectancy will be shorten, causing reducing in CPU performance and damage. Studies have shown that as the temperature increases, the failure rate of its exponential growths. As the CPU working temperature declines 1 ℃ , it will reduce the failure rate a significant value。s Microprocessor Research Laboratory with the person in charge as saying that the heat generated by highfrequency processors, is simply that impede development of a wall. To improve system performance, enhance its reliability and maintain the CPU temperature in the appropriate context, the key factor is the application of cooling technology. We need to take appropriate measures to concentrate the heat in the CPU in a timely manner distributed out, reducing its temperature to ensure that it runs in the normal operating temperature range, the maximum temperature not exceeding 85 ℃ . Therefore, the main CPU heat sink of the cooling device is of great significance. Air Cooling is now the most mon and the highest utilization rate is also Abstract III the most mature of a cooling mode, this heat is simple, direct, reliable performance, mature technology, lowest cost, can solve the heat we usually need to, they have been widely used. Air Cooling is the main form of cooling to the CPU. This article use the forced air cooling, using CFD software, F