freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)與平行四邊形有關(guān)的壓軸題-展示頁

2025-03-30 22:25本頁面
  

【正文】 形ADCE是平行四邊形.(2) 證明:∵∠BAC=90176。∴∠EFM=∠ABP.又∵∠A=∠EMF=90176。BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176。20202021備戰(zhàn)中考數(shù)學(xué)與平行四邊形有關(guān)的壓軸題一、平行四邊形1.如圖,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合),將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點P在邊AD上移動時,求證:△PDH的周長是定值;(3)當(dāng)BE+CF的長取最小值時,求AP的長.【答案】(1)證明見解析.(2)證明見解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90176?!唷螮PH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當(dāng)x=2時,BE+CF取最小值,∴AP=2.考點:幾何變換綜合題.2.如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.(1)P點的坐標為多少(用含x的代數(shù)式表示);(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應(yīng)的x值;(3)當(dāng)x為何值時,△NPC是一個等腰三角形?簡要說明理由.【答案】(1)P點坐標為(x,3﹣x).(2)S的最大值為,此時x=2.(3)x=,或x=,或x=.【解析】試題分析:(1)求P點的坐標,也就是求OM和PM的長,已知了OM的長為x,關(guān)鍵是求出PM的長,方法不唯一,①可通過PM∥OC得出的對應(yīng)成比例線段來求;②也可延長MP交BC于Q,先在直角三角形CPQ中根據(jù)CQ的長和∠ACB的正切值求出PQ的長,然后根據(jù)PM=AB﹣PQ來求出PM的長.得出OM和PM的長,即可求出P點的坐標.(2)可按(1)②中的方法經(jīng)求出PQ的長,而CN的長可根據(jù)CN=BC﹣BN來求得,因此根據(jù)三角形的面積計算公式即可得出S,x的函數(shù)關(guān)系式.(3)本題要分類討論:①當(dāng)CP=CN時,可在直角三角形CPQ中,用CQ的長即x和∠ABC的余弦值求出CP的表達式,然后聯(lián)立CN的表達式即可求出x的值;②當(dāng)CP=PN時,那么CQ=QN,先在直角三角形CPQ中求出CQ的長,然后根據(jù)QN=CN﹣CQ求出QN的表達式,根據(jù)題設(shè)的等量條件即可得出x的值.③當(dāng)CN=PN時,先求出QP和QN的長,然后在直角三角形PNQ中,用勾股定理求出PN的長,聯(lián)立CN的表達式即可求出x的值.試題解析:(1)過點P作PQ⊥BC于點Q,有題意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由題意可知,C(0,3),M(x,0),N(4﹣x,3),P點坐標為(x,3﹣x).(2)設(shè)△NPC的面積為S,在△NPC中,NC=4﹣x,NC邊上的高為,其中,0≤x≤4.∴S=(4﹣x)x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值為,此時x=2.(3)延長MP交CB于Q,則有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,則CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,則CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.綜上所述,x=,或x=,或x=.考點:二次函數(shù)綜合題.3.如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.(1)求證:AD=EC;(2)當(dāng)∠BAC=Rt∠時,求證:四邊形ADCE是菱形.【答案】(1)見解析;(2)見解析.【解析】【分析】(1)先證四邊形ABDE是平行四邊形,再證四邊形ADCE是平行四邊形即可;(2)由∠BAC=90176。AD是邊BC上的中線.∴AD=CD ∵四邊形ADCE是平行四邊形,∴四邊形ADCE是菱
點擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1