freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx昆明中考數(shù)學(xué)與平行四邊形有關(guān)的壓軸題-展示頁

2025-03-30 22:32本頁面
  

【正文】 ∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90176?!唷螮AF+∠BAC=180176?!唷螮FM=∠ABP.又∵∠A=∠EMF=90176。BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176。20202021昆明中考數(shù)學(xué)與平行四邊形有關(guān)的壓軸題一、平行四邊形1.如圖,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),求證:△PDH的周長(zhǎng)是定值;(3)當(dāng)BE+CF的長(zhǎng)取最小值時(shí),求AP的長(zhǎng).【答案】(1)證明見解析.(2)證明見解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識(shí)用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90176。∴∠EPH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長(zhǎng)是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.2.如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落到到B′的位置,AB′與CD交于點(diǎn)E.(1)求證:△AED≌△CEB′(2)若AB = 8,DE = 3,點(diǎn)P為線段AC上任意一點(diǎn),PG⊥AE于G,PH⊥ + PH的值.【答案】(1)證明見解析;(2).【解析】【分析】(1)由折疊的性質(zhì)知,則由得到;(2)由,可得,又由,即可求得的長(zhǎng),然后在中,利用勾股定理即可求得的長(zhǎng),再過點(diǎn)作于,由角平分線的性質(zhì),可得,易證得四邊形是矩形,繼而可求得答案.【詳解】(1)四邊形為矩形, ,又 , ;(2) , , , ,在中,過點(diǎn)作于, , , , , 、共線, ,四邊形是矩形, , .【點(diǎn)睛】此題考查了折疊的性質(zhì)、矩形的性質(zhì)、角平分線的性質(zhì)、注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.3.如果兩個(gè)三角形的兩條邊對(duì)應(yīng)相等,夾角互補(bǔ),那么這兩個(gè)三角形叫做互補(bǔ)三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個(gè)三角形就是互補(bǔ)三角形.(1)用尺規(guī)將圖1中的△ABC分割成兩個(gè)互補(bǔ)三角形;(2)證明圖2中的△ABC分割成兩個(gè)互補(bǔ)三角形;(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.①已知三個(gè)正方形面積分別是1110,在如圖4的網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)畫出邊長(zhǎng)為、的三角形,并計(jì)算圖3中六邊形DEFGHI的面積.②若△ABC的面積為2,求以EF、DI、HG的長(zhǎng)為邊的三角形面積.【答案】(1)作圖見解析(2)證明見解析(3)①62;②6【解析】試題分析:(1)作BC邊上的中線AD即可.(2)根據(jù)互補(bǔ)三角形的定義證明即可.(3)①畫出圖形后,利用割補(bǔ)法求面積即可.②平移△CHG到AMF,連接EM,IM,則AM=CH=BI,只要證明S△EFM=3S△ABC即可.試題解析:(1)如圖1中,作BC邊上的中線AD,△ABD和△ADC是互補(bǔ)三角形.(2)如圖2中,延長(zhǎng)FA到點(diǎn)H,使得AH=AF,連接EH.∵四邊形ABDE,四邊形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90176?!唷鰽EF和△ABC是兩個(gè)互補(bǔ)三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90176。+90176。﹣x,∵∠DBI=360176。﹣90176。﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180176?!呔匦蜛DEF是由矩形AOBC旋轉(zhuǎn)得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BCCD=1,∴D(1,3).(2)①如圖②中,由四邊形ADEF是矩形,得到∠ADE=90176。由(1)可知,AD=AO,又AB=AB,∠AOB=90176。.(1)求證:四邊形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).【答案】(1)見解析;(2)18176。根據(jù)矩形的判定得出即可;(2)求出∠FDC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠DCO,根據(jù)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1