【摘要】第一篇:巧用構造函數(shù)法證明不等式 構造函數(shù)法證明不等式 一、構造分式函數(shù),利用分式函數(shù)的單調(diào)性證明不等式 【例1】證明不等式:|a|+|b||a+b| 1+|a|+|b|≥1+|a+b| 證...
2024-10-26 14:47
【摘要】第一篇:構造函數(shù)證明不等式 構造函數(shù)證明不等式 構造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(shù)(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【摘要】第一篇:構造函數(shù)證明數(shù)列不等式 構造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【摘要】第一篇:運用函數(shù)構造法巧證不等式[本站推薦] 運用函數(shù)構造法巧證不等式 羅小明(江西省吉水二中331600) 不等式證明方法較多,本文介紹主元、零點、導數(shù)法構造函數(shù)證明不等式,以飧讀者。關鍵字:...
2024-11-01 00:39
【摘要】2016廣外高三理科數(shù)學第二輪復習JGH4月7日構造函數(shù)法證明不等式一、教學目標::利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性和最值來證明不等式.:引導學生鉆研教材,歸納求導的四則運算法則的應用,通過類比,化歸思想轉(zhuǎn)換命題,抓住條件與結論的結構形式,合理構造函數(shù).:通過這部分內(nèi)容的學習,培養(yǎng)學生的分析能力
2025-07-29 22:06
【摘要】第一篇:函數(shù)解答題-構造函數(shù)證明不等式 函數(shù)解答題-構造函數(shù)證明不等式例1(2013年高考北京卷(理))設L為曲線C:y=lnx在點(1,0) (I)求L的方程; (II)證明:除切點(1,0)...
2024-10-27 14:53
【摘要】第一篇:不等式證明之函數(shù)構造法(顏秀華) 不等式證明之函數(shù)構造法 作者顏秀華 (湖南省,長沙市第七中學,郵編410003) 【摘要】利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是...
2024-10-26 05:25
【摘要】第一篇:對構造函數(shù)法證明不等式的再研究 龍源期刊網(wǎng)://. 對構造函數(shù)法證明不等式的再研究 作者:時英雄 來源:《理科考試研究·高中》2013年第10期 某刊一文闡述了構造法證明不等式的九個...
2024-10-26 17:38
【摘要】第一篇:導數(shù)證明不等式構造函數(shù)法類別(學生版) 導數(shù)證明不等式構造函數(shù)法類別 1、移項法構造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構造函...
2024-10-26 15:00
【摘要】第一篇:構造函數(shù),利用導數(shù)證明不等式 構造函數(shù),利用導數(shù)證明不等式 湖北省天門中學薛德斌2010年10月 例 1、設當x?[a,b]時,f/(x)g/(x),求證:當x?[a,b]時,f(x...
2024-10-26 21:14
【摘要】第一篇:構造函數(shù)證明數(shù)列不等式答案 構造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構造函數(shù)有l(wèi)...
2024-10-28 06:10
【摘要】第一篇:構造函數(shù),結合導數(shù)證明不等式 構造函數(shù),結合導數(shù)證明不等式 摘要:運用導數(shù)法證明不等式首先要構建函數(shù),以函數(shù)作為載體可以用移項作差,直接構造;合理變形,等價構造;分析(條件)結論,特征構造...
2024-10-28 05:32
【摘要】第一篇:構造法證明不等式5 構造法證明不等式(2) (以下的構造方法要求過高,即使不會也可以,如果沒有時 間就不用看了) 在學習過程中,常遇到一些不等式的證明,看似簡單,但卻無從下手,多種常用...
2024-10-28 01:37
【摘要】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構造一個函數(shù)然后做差求導,確定單調(diào)性??墒沁€是一點思路...
2024-10-30 22:00
【摘要】第一篇:構造函數(shù)法證明不等式的八種方法 構造函數(shù)法證明不等式的八種方法 利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點。 解...
2024-10-28 04:52