【摘要】不等式與不等式組專題復習(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負數(shù),則x<0;③x是非負數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
2025-04-22 12:51
【摘要】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關(guān)證明(1)用排
2025-04-23 08:24
【摘要】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】不等式的綜合問題典例分析【例1】若實數(shù)、、滿足,則稱比遠離.⑴若比遠離,求的取值范圍;⑵對任意兩個不相等的正數(shù)、,證明:比遠離;⑶已知函數(shù)的定義域.任取,等于和中遠離的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
2025-06-13 13:51
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-26 01:36
2025-07-30 19:51
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-20 13:38
【摘要】解不等式方程的方法:(1)設:弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應用題全部含義的一個不等的關(guān)系;(3)列:根據(jù)這個不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫出答案,出售時標價為1200元,后來由于商品積壓,商店準備打折出售但要保持利
2025-08-23 07:18
【摘要】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-07-01 01:24
【摘要】1如皋初中七下不等式與不等式組單元測試題班級姓名學號一、選擇題:1.如果a>b,且acbc,那么應有()A.c>0B.cO=0D.
2025-01-14 21:17
【摘要】......不等式專題復習類型一:不等關(guān)系及解不等式1.若為實數(shù),則下列命題正確的是()A.若,則B.若,則C.若,則D.若,則2
【摘要】不等式與不等式組測試姓名__________學號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個數(shù)是??
2024-11-19 04:58
【摘要】第一篇:不等式主題層面問題 不等式主題層面問題: 不等式是刻畫不等關(guān)系的數(shù)學模型,研究不等式可以幫助學生更深刻的認識和掌握事物之間的運動變化及其相應的規(guī)律,同時,不等式的知識的廣泛應用可以幫助學生...
2024-11-07 03:30
【摘要】第一篇:57均值不等式與不等式的實際應用 學案五十七:均值不等式與不等式的實際應用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2024-11-03 14:01
【摘要】.......初二數(shù)學不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-31 07:46