freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式與平方差公式教案-文庫吧資料

2024-11-04 22:29本頁面
  

【正文】 的語言訓練使學生做到,能用準確的語言表述學過的概念和命題,即進行語言準確性訓練;能學會一些基本的推理論證語言,如“因為……,所以……”句式,“如果……,那么……”句式等等;提高符號語言的識別和表達能力,例如,把要證明的命題結(jié)合圖形,用已知,求證的形式寫出來.(2)提高學生的“圖形”能力,包括利用大綱允許的工具畫圖(垂線、平行線)的能力和在對要證命題的理解(如分清題設(shè)、結(jié)論)的基礎(chǔ)上,畫出要證明的命題的圖形的能力,后一點尤其重要,一般通過圖形易于弄清命題并找出證明的方法.(3)加強各種推理訓練,一般應先使學生從“模仿”教科書的形式開始訓練.首先是用自然語言敘述只有一步推理的過程,然后用簡化的“三段論”方法表述出這一過程,再進行有兩步推理的過程的模仿;最后,在學完“命題、定理、證明”一單元后,總結(jié)證明的一般步驟,并進行多至三、四步的推理.在以上訓練中,每一步推理的后面都應要求填注推理根據(jù),這既可訓練良好的推理習慣,又有助于掌握學過的命題.教學目標:了解證明的必要性,知道推理要有依據(jù);熟悉綜合法證明的格式,能說出證明的步驟.能用符號語言寫出一個命題的題設(shè)和結(jié)論.通過對真命題的分析,加強推理能力的訓練,培養(yǎng)學生邏輯思維能力.教學重點:證明的步驟與格式.教學難點:將文字語言轉(zhuǎn)化為幾何符號語言.教學過程:一、復習提問命題“兩直線平行,內(nèi)錯角相等”的題設(shè)和結(jié)論各是什么?根據(jù)題設(shè),應畫出什么樣的圖形?(答:兩條平行線a、b被第三條直線c所截)結(jié)論的內(nèi)容在圖中如何表示?(答:在圖中標出一對內(nèi)錯角,并用符號表示)二、例題分析例1 、證明:兩直線平行,內(nèi)錯角相等.已知: a∥b,c是截線.求證:∠1=∠2.分析:要證∠1=∠2,只要證∠3=∠2即可,因為∠3與∠1是對頂角,根據(jù)平行線的性質(zhì),易得出∠3=∠2.證明: ∵a∥b(已知),∴∠3=∠2(兩直線平行,同位角相等).∵∠1=∠3(對頂角相等),∴∠1=∠2(等量代換).例2 、證明:鄰補角的平分線互相垂直.已知:如圖,∠AOB+∠BOC=180176。學習過程:(一)自主探索計算:(1)(a+b)2 (2)(ab)2你能用文字敘述以上的結(jié)論嗎?(二)合作交流:你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學交流。利用公式進行熟練地計算。:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。(2)已知,求的值。正方形HCGM的邊長是b,其面積就是 。完全平方公式教案7一、學習目標二、學習重點運用完全平方公式進行一些數(shù)的簡便運算三、學習難點靈活運用平方差和完全平方公式進行整式的簡便運算四、學習設(shè)計(一)預習準備(1)預習書p2627(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[(3)預習作業(yè):(1)(2) (3)(4):(1) (2)(二)學習過程平方差公式和完全平方公式的逆運用由 反之反之填空:(1)(2)(3)(4)(5)(6)(7)若,則k=(8)若是完全平方式,則k=例1計算:1. 2.現(xiàn)在我們從幾何角度去解釋完全平方公式:從圖(1)中可以看出大正方形的邊長是a+b,它是由兩個小正方形和兩個矩形組成,所以大正方形的面積等于這四個圖形的面積之和.則S= =即:如圖(2)中,大正方形的邊長是a,它的面積是 。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。已知(a+b)2=24,(a—b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。三、學習難點:理解完全平方公式的結(jié)構(gòu)特征并能靈活應用公式進行計算。6完全平方公式:一、學習目標會推導完全平方公式,并能運用公式進行簡單的計算。四、再識完全平方公式活動內(nèi)容:例1用完全平方公式計算:(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。結(jié)構(gòu)特點:左邊是二項式(兩數(shù)和(差))的平方;右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。三、初識完全平方公式活動內(nèi)容:通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。二、情境引入活動內(nèi)容:提出問題:一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。右邊是兩數(shù)的平方差。教學難點:會用完全平方公式進行運算教學方法:探索討論、歸納總結(jié)。在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內(nèi)在美。體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算?!次濉?、探險之旅(1)(3a+2b)2=________________________________(2)(72m) 2 =__________________________________(3)(+2n) 2=_______________________________(4)(3/5a1/2b) 2=________________________________(5)(mn+3) 2=__________________________________(6)() 2=_________________________________(7)(2xy23x2y) 2=_______________________________(8)(2n33m3) 2=________________________________板書設(shè)計完全平方公式兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(3)中間項的符號由等號左邊的兩項符號是否相同決定。⑧ ()2 =_____________.〈四〉、[學生小結(jié)]你認為完全平方公式在應用過程中,需要注意那些問題?(1)公式右邊共有3項。⑥ (4x5y)2 =______________。④ (3a2)2 =_______________。② (yx)2 =_______________。[學生回答]總結(jié)完全平方公式的語言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(3)三項系數(shù)的特點(特別是符號的特點)。(1)原式的特點。難點:會推導完全平方公式教學過程教學過程設(shè)計如下:〈一〉、提出問題[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?(2m+3n)2=_______________,(2m3n)2=______________,(2m3n)2=_______________,(2m+3n)2=_______________。(五)情感與態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理數(shù)、實數(shù)、代數(shù)式;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、不等式、函數(shù)等進行描述。教學目標(一)教學目標:經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。學習者對即將學習的內(nèi)容已經(jīng)具備的水平:在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。學情分析在學習本課之前應具備的基本知識和技能:①同類項的定義。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。例1和例2的講解可以在老師的引導下,師生共同分析和解答,使學生當堂能夠掌握運用平方公式進行完全因式分解的方法。本節(jié)課要求學生掌握完全平方公式的特點和靈活運用公式把多項式進行因式分解的方法。利用完全平方公式進行多項式的因式分解是在學生已經(jīng)學習了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進行的,因此在教學設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導學生積極思考問題,從中培養(yǎng)學生的思維品質(zhì)。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。(1)(mn-1) 2; (2)7am-1(a-1) 2。(1)(5m-8) 2; (2)(2a+9) 2;(3)(2p-5q) 2; (4)(4-xy) 2;(5)(ab-2) 2; (6)(5a2-4b2) 2。(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)2。(1) x -4x; (2)a5+a4+ a3。3。2。五、作業(yè)把下列各式分解因式:1。2。首先要觀察、分析和判斷所給出的多項式是否為一個完全平方式,如果這個多項式是一個完全平方式,再運用完全平方公式把它進行因式分解。(1)(a-12) 2; (2)(2ab+1) 2;(3)(13x+3y) 2; (4)(12a-b)2。(5)是完全平方式,1-a+a2/4=(1-a2)2。(3)是完全平方式,a24ab+4b2=(a-2b)2。(1)不是完全平方式,如果把第二項的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2。(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;(4)9m2+12m+4; (5)1-a+a2/4。2。三、課堂練習(投影)1。4 +( )2=(1- )2。解法1 1- m+ =1-2例2 把1- m+ 分解因式。5x2所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式。例1 把25x4+10x2+1分解因式。(3x)因為缺第三部分。1,所以25x -10x +1=(5x-1) 。25x =(5x ) ,1=1 ,10x =2因為第三部分必須是2xy。3,所以x2+6x+9=(x+3) 。因為x2與9分別是x的平方與3的平方,6x=2問:下列多項式是否為完全平方式?為什么?(1)x2+6x+9; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1。運用這兩個式子,可以把形式是完全平方式的多項式分解因式。這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解。請寫出完全平方公式。解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2) 16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n)。2。問:什么叫把一個多項式因式分解?我們已經(jīng)學習了哪些因式分解的方法?答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解。難點:靈活運用完全平方公式公解因式。3.進一步培養(yǎng)學生全面地觀察問題、分析問題和逆向思維的能力.4.通過運用公式法分解因式的教學,使學生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。使
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1