【摘要】第7課時(shí)等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎(jiǎng)賞發(fā)明國際象棋的大臣西薩·班·達(dá)依爾,并問他想得到什么樣的獎(jiǎng)賞.大臣說:“陛下,請(qǐng)您在這張棋盤的第一個(gè)小格內(nèi)賞給我一粒麥子,在第二個(gè)小格內(nèi)給兩粒,在第三個(gè)小格
2024-12-16 02:37
【摘要】等比數(shù)列(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問題.1.如果一個(gè)數(shù)列從第______項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的______都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的______,通常用字母____表示
2024-12-13 01:49
【摘要】等比數(shù)列的前n項(xiàng)和(一)課時(shí)目標(biāo)n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決一些簡單問題.1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)
2024-12-13 10:13
【摘要】第7課時(shí)等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎(jiǎng)賞發(fā)明國際象棋的大臣西薩?班?達(dá)依爾,并問他想得到什么樣的獎(jiǎng)賞.大臣說:“陛下,請(qǐng)您在這張棋盤的第一個(gè)小格內(nèi)賞給我一粒麥子,在第二個(gè)小格內(nèi)給兩粒,在第三個(gè)小格內(nèi)給四粒,照這樣下去,每一小格內(nèi)都比前一小格
2024-11-25 19:03
【摘要】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=______________=_____;當(dāng)q=1時(shí),Sn=____________.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S
【摘要】等比數(shù)列(二)課時(shí)目標(biāo).,能用性質(zhì)靈活解決問題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有________________,特別地,當(dāng)m+n=2k時(shí),am·an=________.2.在等比數(shù)列{an}中,每隔k項(xiàng)(k∈N+)取出一項(xiàng),按
【摘要】主講老師:陳震等比數(shù)列的前n項(xiàng)和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-13 11:53
【摘要】【成才之路】2021年春高中數(shù)學(xué)第1章數(shù)列3等比數(shù)列第3課時(shí)等比數(shù)列的前n項(xiàng)和同步練習(xí)北師大版必修5一、選擇題1.設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,則S4a2=()A.2B.4[答案]C[解析]S4=a11-q4
2024-12-13 06:37
【摘要】復(fù)習(xí):1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項(xiàng)公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內(nèi)麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:“
2024-11-25 19:35
【摘要】等比數(shù)列的前n項(xiàng)和(一)沙河二中高一數(shù)學(xué)組復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2024-11-25 19:50
【摘要】數(shù)列第一章§3等比數(shù)列第一章第3課時(shí)等比數(shù)列的前n項(xiàng)和課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)國際象棋起源于古代印度.相傳國王要獎(jiǎng)賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上
2024-11-25 03:39
【摘要】課時(shí)教學(xué)設(shè)計(jì)首頁授課教師:授課時(shí)間:10年9月9日課題課型新授課第幾課時(shí)2課時(shí)教學(xué)目標(biāo)(三維)項(xiàng)和公式,達(dá)到靈活應(yīng)用的程度項(xiàng)和的性質(zhì),培養(yǎng)學(xué)生的類比歸納能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)教學(xué)重點(diǎn)與難點(diǎn)
2024-08-31 16:48
【摘要】等差數(shù)列與等比數(shù)列的類比等差數(shù)列等比數(shù)列定義首項(xiàng)、公差(公比)取值有無限制通項(xiàng)公式主要性質(zhì)1(2)nnaqna???11nnaaq??1(2)nnaadn????1(1)naand???(1)()nmaanmd???
2024-11-26 12:17
【摘要】2.等比數(shù)列的前n項(xiàng)和1.(1)等比數(shù)列的前n項(xiàng)和公式:當(dāng)q≠1時(shí),Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當(dāng)q=1時(shí),Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項(xiàng)和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2024-12-16 13:12
【摘要】課題:等比數(shù)列的n項(xiàng)和概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程,理解前n項(xiàng)和公式的含義,并會(huì)用公式進(jìn)行有關(guān)計(jì)算【課前預(yù)習(xí)】1.推導(dǎo)公式:(1)研究633222221??????的計(jì)算;
2024-11-28 01:05