【摘要】前面的知識(shí)你忘記了嗎?讓我們一起來復(fù)習(xí)一下吧邊角邊公理(3種)我們學(xué)過幾種三角形的全等判定呢?角邊角公理角角邊公理邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等小結(jié)角邊角公理(ASA)有兩個(gè)角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等小結(jié)角角邊公理(
2024-12-09 01:58
【摘要】課題:12.1全等三角形教學(xué)目標(biāo):1了解全等形及全等三角形的的概念;2理解全等三角形的性質(zhì)3在圖形變換以及實(shí)際操作的過程中發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的幾何直覺,4學(xué)生通過觀察、發(fā)現(xiàn)生活中的全等形和實(shí)際操作中獲得全等三角形的體驗(yàn)在探索和運(yùn)用全等三角形性質(zhì)的過程中感受到數(shù)學(xué)的樂趣重點(diǎn):探究全等三角形的性質(zhì)難點(diǎn):掌握
2025-08-11 07:46
【摘要】小明踢球時(shí)不慎把一塊三角形玻璃打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊于原來一樣的三角形玻璃呢?如果可以,帶哪塊去合適呢?為什么?(2)(1)先任意畫出一個(gè)△ABC,再畫一個(gè)△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B(即使兩角和它們的夾邊對(duì)應(yīng)
2024-12-09 00:59
【摘要】全等三角形同一張底片洗出的同大小照片是能夠完全重合的;回憶:舉出現(xiàn)實(shí)生活中能夠完全重合的圖形的例子?能夠完全重合的兩個(gè)圖形叫做全等圖形.圖2圖1一、定義:能夠完全重合的兩個(gè)三角形叫做全等三角形互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).互相重合的邊叫做對(duì)應(yīng)邊.互相重合的頂點(diǎn)角叫做對(duì)應(yīng)角全等三
2024-12-06 01:58
【摘要】13.1全等三角形教學(xué)目標(biāo):1了解全等形及全等三角形的的概念;2理解全等三角形的性質(zhì)3在圖形變換以及實(shí)際操作的過程中發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的幾何直覺,4學(xué)生通過觀察、發(fā)現(xiàn)生活中的全等形和實(shí)際操作中獲得全等三角形的體驗(yàn)在探索和運(yùn)用全等三角形性質(zhì)的過程中感受到數(shù)學(xué)的樂趣重點(diǎn):探究全等三
2024-12-10 09:40
【摘要】紅河一中2012-2013學(xué)年上學(xué)期初二數(shù)學(xué)第十一章全等三角形測(cè)試卷一、選擇題(每小題3分,共27分)1.如圖,某同學(xué)把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是()①去②去③去①和②去2.直角三角形兩銳角的角平分線所交成的角的度數(shù)是()A.45°
2025-01-20 01:58
【摘要】)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階))))))))))))))))))))))))))))
2025-06-19 13:14
【摘要】第十二章全等三角形全等三角形2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?R全等形能夠完全的兩個(gè)圖形.經(jīng)過平移、翻折、旋轉(zhuǎn)后的圖形與原圖形.自我診斷1.下列圖形中與已知圖形全等的是()重合全等B全等三角形及性質(zhì)全等三角形的相等,對(duì)應(yīng)角
2025-06-19 13:59
2025-06-19 13:53
【摘要】祝大家學(xué)習(xí)愉快!三角形全等的條件(一)①AB=DE②BC=EF③CA=FD④∠A=∠D⑤∠B=∠E⑥∠C=∠FABCDEF1、什么叫全等三角形?能夠重合的兩個(gè)三角形叫全等三角形。2、全等三角形有什么性質(zhì)?情境問題:
2024-12-09 01:01
2025-06-19 13:29
【摘要】三角形全等的條件輝南五中王微我只需量一個(gè)角我量三條邊和三個(gè)角與樣本核對(duì)ABCA′B′C′如果△ABC和△A′B′C′滿足三條邊對(duì)應(yīng)相等,三個(gè)角對(duì)應(yīng)相等,即AB=A′B′,BC=B′C′,AC=A′C′,∠A=∠A′,
【摘要】人教版第十二單元全等三角形的判定ABC什么叫全等三角形??jī)蓚€(gè)能完全重合的三角形叫做全等三角形。AˊBˊCˊABC全等三角形的性質(zhì)?全等三角形:對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等?!鰽BC≌△A’B’C’AˊBˊCˊAB=A’B’,AC=A’C’,BC=B’C’
2025-06-18 04:11
2025-06-23 12:07
【摘要】九州教育中心練習(xí)紙聯(lián)系方式:0316-7102071
2025-03-28 14:23