【摘要】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過(guò)程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(1)公式中a,b的取值是
2024-11-25 19:03
【摘要】問(wèn)題探究大。數(shù)比左邊的點(diǎn)表示的數(shù),右邊的點(diǎn)表示的與表示兩個(gè)不同的實(shí)數(shù)分別與點(diǎn):在數(shù)軸上不同的點(diǎn) 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點(diǎn)的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個(gè)實(shí)數(shù)a,b你能想到哪些比大
2025-03-16 14:54
【摘要】知識(shí)回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)。回顧練習(xí)。,求證:最大,均為正數(shù),且,,,:設(shè) 練習(xí)cbdadcbaadcba????1練習(xí)2:某市環(huán)保局為增加城市的綠地面積,提出兩個(gè)投資方案:方案A為一次性投資500萬(wàn)元;方案B為第一年投資5萬(wàn)元,以后每年都比前一年增加
【摘要】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時(shí),主要內(nèi)容是探索基本不等式的生成和證明過(guò)程及其簡(jiǎn)單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點(diǎn),它與線性規(guī)劃呈并列結(jié)構(gòu),可用來(lái)求某些函數(shù)的值域和最值,也可解決實(shí)際生活中的最優(yōu)化配置問(wèn)題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-16 07:03
【摘要】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會(huì)解決有關(guān)的實(shí)際應(yīng)用問(wèn)題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-26 08:10
【摘要】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-16 20:20
【摘要】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識(shí)的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問(wèn)題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會(huì)。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問(wèn)激疑,創(chuàng)設(shè)情景展示北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過(guò)三個(gè)問(wèn)題
【摘要】第一頁(yè),編輯于星期六:點(diǎn)三十六分。,第一課時(shí)基本不等式,第二頁(yè),編輯于星期六:點(diǎn)三十六分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十六分。,第四頁(yè),編輯于星期六:點(diǎn)三十六分。,第...
2024-10-22 19:00
2024-10-22 19:01
【摘要】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-27 18:02
【摘要】:2baab??引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長(zhǎng)為a、b,那么正方形的邊長(zhǎng)為多少?面積為多少呢?ADCBGEFH引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-27 18:20
【摘要】知識(shí)回顧三個(gè)兩次模塊回顧練習(xí)010340323107320144112222????????????xxxxxxxx.)()()()(求不等式的解集????。,求丨,丨已知集合 BAxxxBxxA.?034016222????
【摘要】問(wèn)題探究RCsincBsinbAsinaABCRCBAcbaCABCRt2901???????? 圓的半徑,求證:的外接是所的邊長(zhǎng),,,為角,,,中,:在 探究結(jié)論是否還成立?中,上述:在任意一個(gè)三角形 探究ABC2CsinBsinAsincbaCsin
2025-03-16 14:29
【摘要】問(wèn)題探究CcoscbbacBcosaccabAcosbccbacbaCBAABC2221222222222?????????? ,請(qǐng)證明下列結(jié)論:,,分別是的對(duì)邊,,中,:在 探究以解決哪些問(wèn)題?請(qǐng)問(wèn)余弦定理可對(duì)角有關(guān)的三角問(wèn)題,對(duì)邊,:正弦定理可以解決與 探究2嗎
【摘要】《基本不等式》同步測(cè)試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2024-11-23 21:17