【摘要】①?gòu)?fù)數(shù)的分類(lèi)a+bi?????實(shí)數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復(fù)數(shù)概念的問(wèn)題,首先可找準(zhǔn)復(fù)數(shù)的實(shí)部與虛部(若復(fù)數(shù)為非標(biāo)準(zhǔn)代數(shù)形式,則應(yīng)通過(guò)代數(shù)運(yùn)算化為代數(shù)形式)
2024-11-25 23:14
【摘要】2.演繹推理理解演繹推理的概念,掌握演繹推理的形式,并能用它們進(jìn)行一些簡(jiǎn)單的推理,了解合情推理與演繹推理的聯(lián)系與區(qū)別.本節(jié)重點(diǎn):演繹推理的結(jié)構(gòu)特點(diǎn).本節(jié)難點(diǎn):三段論推理規(guī)則.1.演繹推理從的原理出發(fā),推出情況下的結(jié)論的推理形式.它的特點(diǎn)是:由的推理.它的特征是:當(dāng)
2024-11-25 23:15
【摘要】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運(yùn)用綜合法、分析法證題.本節(jié)重點(diǎn):綜合法與分析法的概念及用分析法與綜合法證題的過(guò)程、特點(diǎn).本節(jié)難點(diǎn):用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2024-11-26 08:10
【摘要】歸納是通過(guò)對(duì)特例的觀察和綜合去發(fā)現(xiàn)一般規(guī)律,一般通過(guò)觀察圖形或分析式子尋找規(guī)律,歸納過(guò)程的典型步驟是:先在諸多特例中發(fā)現(xiàn)某些相似性,再把相似性推廣為一個(gè)明確表述的一般命題,最后對(duì)該命題進(jìn)行檢驗(yàn)或論證.[例1]在德國(guó)布萊梅舉行的第48屆世乒賽期間,某商場(chǎng)櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有一層,就一
2024-11-25 19:03
【摘要】1.了解復(fù)合函數(shù)的定義,并能寫(xiě)出簡(jiǎn)單函數(shù)的復(fù)合過(guò)程;2.掌握復(fù)合函數(shù)的求導(dǎo)方法,并運(yùn)用求導(dǎo)方法求簡(jiǎn)單的復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):①導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則的應(yīng)用.②復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)難點(diǎn):復(fù)合函數(shù)的求導(dǎo)方法.復(fù)合函數(shù)的概念一般地,對(duì)于兩個(gè)函數(shù)y=f(u)和
2024-11-25 17:04
【摘要】1.函數(shù)的最大(小)值與導(dǎo)數(shù)1.理解函數(shù)最值的概念及閉區(qū)間上函數(shù)存在最值的定理.2.掌握用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最大值和最小值的方法.本節(jié)重點(diǎn):函數(shù)在閉區(qū)間上最值的概念與求法.本節(jié)難點(diǎn):極值與最值的區(qū)別與聯(lián)系,求最值的方法.極值與最值的區(qū)別和聯(lián)系(1)函數(shù)的極值表示函數(shù)
【摘要】理解類(lèi)比推理概念,能利用類(lèi)比推理的方法進(jìn)行簡(jiǎn)單的推理,體會(huì)并認(rèn)識(shí)合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.本節(jié)重點(diǎn):類(lèi)比推理.本節(jié)難點(diǎn):類(lèi)比推理的特點(diǎn)及應(yīng)用.1.類(lèi)比推理由兩類(lèi)對(duì)象具有某些特征和其中一類(lèi)對(duì)象的某些,推出另一類(lèi)對(duì)象也具有這些特征的推理稱(chēng)為類(lèi)比推理(簡(jiǎn)稱(chēng)類(lèi)比).簡(jiǎn)言之,類(lèi)比推理是由到
2024-11-25 23:20
【摘要】1.導(dǎo)數(shù)的概念1.知道函數(shù)的瞬時(shí)變化率的概念,理解導(dǎo)數(shù)的概念.2.能利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):導(dǎo)數(shù)的定義.本節(jié)難點(diǎn):用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).對(duì)導(dǎo)數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負(fù),但Δx≠
【摘要】1.導(dǎo)數(shù)的幾何意義理解導(dǎo)數(shù)的幾何意義,會(huì)求曲線的切線方程.本節(jié)重點(diǎn):導(dǎo)數(shù)的幾何意義及曲線的切線方程.本節(jié)難點(diǎn):求曲線在某點(diǎn)處的切線方程.1.深刻理解“函數(shù)在一點(diǎn)處的導(dǎo)數(shù)”、“導(dǎo)函數(shù)”、“導(dǎo)數(shù)”的區(qū)別與聯(lián)系(1)函數(shù)在一點(diǎn)處的導(dǎo)數(shù)f′(x0)是
【摘要】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.函數(shù)的單調(diào)性與導(dǎo)數(shù)借助于函數(shù)的圖象了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)用導(dǎo)數(shù)法求函數(shù)的單調(diào)區(qū)間.本節(jié)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點(diǎn):用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.1.函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)的單調(diào)性與
【摘要】1.基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則1.熟記基本初等函數(shù)的導(dǎo)數(shù)公式,理解導(dǎo)數(shù)的四則運(yùn)算法則.2.能利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式,求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):導(dǎo)數(shù)公式和導(dǎo)數(shù)的運(yùn)算法則及其應(yīng)用.本節(jié)難點(diǎn):導(dǎo)數(shù)公式和運(yùn)算法則的應(yīng)用.1.基本初等函數(shù)的導(dǎo)數(shù)公式
【摘要】1.7定積分的簡(jiǎn)單應(yīng)用利用定積分的思想方法解決一些簡(jiǎn)單曲邊圖形的面積、變速直線運(yùn)動(dòng)的路程、變力作功等問(wèn)題.本節(jié)重點(diǎn):應(yīng)用定積分的思想方法,解決一些簡(jiǎn)單的諸如求曲邊梯形面積、變速直線運(yùn)動(dòng)的路程、變力作功等實(shí)際問(wèn)題.本節(jié)難點(diǎn):把實(shí)際問(wèn)題抽象為定積分的數(shù)學(xué)模型.1.利用定
【摘要】1.4生活中的優(yōu)化問(wèn)題舉例能利用導(dǎo)數(shù)知識(shí)解決實(shí)際生活中的最優(yōu)化問(wèn)題.本節(jié)重點(diǎn):利用導(dǎo)數(shù)知識(shí)解決實(shí)際中的最優(yōu)化問(wèn)題.本節(jié)難點(diǎn):將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,建立函數(shù)模型.1.解決實(shí)際應(yīng)用問(wèn)題時(shí),要把問(wèn)題中所涉及的幾個(gè)變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過(guò)分析、聯(lián)想、抽象和轉(zhuǎn)
【摘要】1.導(dǎo)數(shù)的概念對(duì)于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應(yīng)地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=