【摘要】正弦定理和余弦定理沈陽(yáng)二中數(shù)學(xué)組高中數(shù)學(xué)⑤B版正弦定理第一節(jié)思考:在直角三角形中,“邊”與“角”的關(guān)系Rt中ABC?222abc??sin,sinacAbcB??sinsinabAB?sin1C?sinsinsinabc
2024-11-25 11:59
【摘要】第一章解三角形§正弦定理和余弦定理1.正弦定理(一)自主學(xué)習(xí)知識(shí)梳理1.一般地,把三角形的三個(gè)角A,B,C和它們的對(duì)邊a,b,c叫做三角形的________.已知三角形的幾個(gè)元素求其他元素的過(guò)程叫做____________.2.在Rt△ABC中,C=90°,則有
2024-12-06 12:00
【摘要】正弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.正弦定理:asinA=bsinB=csinC=2R的常見(jiàn)變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=___
2024-11-30 21:33
【摘要】第一篇:高中數(shù)學(xué)《正弦定理》教案新人教A版必修5(大全) 正弦定理 ●教學(xué)目標(biāo)知識(shí)與技能:通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜...
2024-10-06 17:07
【摘要】正弦定理A組基礎(chǔ)鞏固1.在△ABC中,已知b=40,c=20,C=60°,則此三角形的解的情況是()A.有一解B.有兩解C.無(wú)解D.有解但解的個(gè)數(shù)不確定解析:由正弦定理bsinB=csinC,得sinB=bsinCc=40×3220=31.∴
2024-12-16 20:25
【摘要】問(wèn)題探究RCsincBsinbAsinaABCRCBAcbaCABCRt2901???????? 圓的半徑,求證:的外接是所的邊長(zhǎng),,,為角,,,中,:在 探究結(jié)論是否還成立?中,上述:在任意一個(gè)三角形 探究ABC2CsinBsinAsincbaCsin
2025-03-16 14:29
【摘要】正弦定理高中數(shù)學(xué)高一年級(jí)必修五第一章第學(xué)習(xí)目標(biāo)?讓學(xué)生從已有的知識(shí)經(jīng)驗(yàn)出發(fā),通過(guò)對(duì)特殊三角形邊角間數(shù)量關(guān)系的探求,發(fā)現(xiàn)正弦定理;再由特殊到一般,從定性到定量,探究在任意三角形中,邊與其對(duì)應(yīng)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀察、猜想、比較推、導(dǎo)正弦定理,由此培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思考能力;
2025-03-16 12:58
【摘要】正弦定理(1)【學(xué)習(xí)目標(biāo)】1.通過(guò)對(duì)直角三角形邊角間數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理.2.能夠利用向量方法證明正弦定理,并運(yùn)用正弦定理解決兩類解三角形的簡(jiǎn)單問(wèn)題.【重點(diǎn)難點(diǎn)】1.重點(diǎn):正弦定理的發(fā)現(xiàn),證明及其簡(jiǎn)單應(yīng)用.2.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過(guò)程】一、自主學(xué)習(xí):任務(wù)1:在直角三角形中三角形的邊與
【摘要】正弦定理(2)【學(xué)習(xí)目標(biāo)】.,判斷三角形時(shí)解的個(gè)數(shù)..【重點(diǎn)難點(diǎn)】重點(diǎn):正弦定理的應(yīng)用.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過(guò)程】一、自主學(xué)習(xí):任務(wù)1:正弦定理:_______________________.任務(wù)2:正弦定理的變形公式:_____________________
2024-12-17 03:49
【摘要】素材1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對(duì)大邊大邊對(duì)大角CabbacBaccabAbccbacos2cos2cos2222222222?????????復(fù)習(xí)?例1。在△ABC中,a,b,c
2024-11-25 19:51
【摘要】本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2與x軸的交點(diǎn))0,0()0,(?)0,2(?圖象的最低點(diǎn))1,(23??圖象的最高點(diǎn))1,2(?(五點(diǎn)作圖法)(1)列表(3)連線(2)
2024-11-25 16:27
【摘要】第一步把冰箱打開(kāi)。第二步把水果放進(jìn)冰箱。第三步把冰箱門關(guān)上。問(wèn)3、指出在家中燒開(kāi)水的過(guò)程分幾步?問(wèn)1、要把水果裝入冰箱分幾步?第三步輸出方程的根或無(wú)解的信息20axbxc???的解問(wèn)2、如何求一元二次方程解:第一步計(jì)算第二步如果則方程無(wú)解解:第一步,②-①
2024-08-06 18:14
【摘要】第一篇:2014年高中數(shù)學(xué)新人教A版必修5 第一章解三角形 教材分析與導(dǎo)入 三維目標(biāo) 一、知識(shí)與技能 ,掌握正弦定理的內(nèi)容及其證明方法; . 二、過(guò)程與方法 ,共同探究在任意三角形...
2024-11-03 13:22
2024-11-27 23:20
【摘要】正弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.正弦定理:asinA=bsinB=csinC=2R的常見(jiàn)變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=____
2024-12-13 06:40