【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2024-09-06 11:53
【摘要】218.111.1常微分方程教學大綱(OrdinaryDifferentialEquations)學分數(shù)3周學時3+1:常微分方程(一學期課程)一學期:4*18.:(1)課
2024-09-04 20:43
【摘要】《常微分方程》教學大綱一、?計劃學時:72課時二、?適用專業(yè):數(shù)學與應(yīng)用數(shù)學(師范類)(本、??疲?、信息與計算科學(本)三、???課程性質(zhì)與任務(wù):常微分方程是高等師范院校數(shù)學與應(yīng)用數(shù)學專業(yè)及信息與計算專業(yè)的基礎(chǔ)課之一。本課程主要學習各種基本類型的常微分方程解的性質(zhì)、方程的解法及其某些應(yīng)用。通過該課程的學習,使學生正確理解常微分
2025-04-22 23:04
【摘要】常微分方程課程教學大綱(OrdinaryDifferentialEquation)課程性質(zhì):學科基礎(chǔ)課適用專業(yè):信息與計算科學先修課程:數(shù)學分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學分:3教學目的與要求:微分方程是數(shù)學理論聯(lián)系實際的重要渠道之一,也是其它數(shù)學分支的一個綜合應(yīng)用場所,我們所研究的方程多數(shù)是由其它學科(如物理、氣象、生態(tài)學、經(jīng)濟學)推
2024-09-04 20:44
【摘要】數(shù)學實驗報告1.題目:某容器盛滿水后,底端直徑為d0的小孔開啟(如圖1),根據(jù)水力學知識,當水面高度為h時,誰從小孔中流出的速度為v=*(g*h)^(其中g(shù)為重力加速度,)1)若容器為倒圓錐形(如圖1),,小孔直徑d為3cm,為水從小孔中流完需要多少時間;2min時水面高度是多少。2)若容器為倒葫蘆形(如圖2),,小孔直徑d為3cm,由底端(記x=0)(
2025-01-22 17:00
【摘要】[原創(chuàng)]偏微分方程數(shù)值解法的MATLAB源碼【更新完畢】說明:由于偏微分的程序都比較長,比其他的算法稍復雜一些,所以另開一貼,專門上傳偏微分的程序謝謝大家的支持!其他的數(shù)值算法見:..//Announce/?BoardID=209&id=82450041、古典顯式格式求解拋物型偏微分方程(一維熱傳導方程)function[Uxt]=PDEPara
2025-06-25 22:12
【摘要】微分方程數(shù)值解課程設(shè)計姓名*****學號200******專業(yè)信息與計算科學課設(shè)題目:對初邊值問題2222xutu?????(0x1)0||10??
2025-01-18 04:03
2025-06-14 05:22
【摘要】第九章常微分方程數(shù)值解法許多實際問題的數(shù)學模型是微分方程或微分方程的定解問題。如物體運動、電路振蕩、化學反映及生物群體的變化等。常微分方程可分為線性、非線性、高階方程與方程組等類;線性方程包含于非線性類中,高階方程可化為一階方程組。若方程組中的所有未知量視作一個向量,則方程組可寫成向量形式的單個方程。因此研究一階微分方程的初值問題
2024-09-05 01:54
【摘要】一.填空1.Euler法的一般遞推公式為,整體誤差為,局部截斷誤差為:.,改進Euler的一般遞推公式整體誤差為,局部截斷誤差為:。2.線性多步法絕對穩(wěn)定的充要條件是
2025-04-22 23:19
【摘要】《數(shù)學系(常微分方程)》教學大綱 學時:51學時 學分:3 適用專業(yè):數(shù)學、系統(tǒng)科學與工程及控制理論與應(yīng)用等專業(yè)。大綱執(zhí)筆人:魯世平 大綱審定人:劉樹德 一、說明(500字左右)1、課程的性質(zhì)、地位和任務(wù)本課程是高等師范院校數(shù)學專業(yè)和綜合性大學數(shù)學專業(yè)、系統(tǒng)科學與工程專業(yè)、控制理論與應(yīng)用等專業(yè)的一門重要基礎(chǔ)課程,它的任務(wù)是使學生獲得微
2024-09-05 02:02
【摘要】湖南工程學院微分方程數(shù)值解法實驗報告專業(yè)班級姓名學號組別信息與計算科學1001鄧鶴201010010215實驗日期2013年5月9日第4次實驗指導老師楊繼明評分實驗名稱用差分格式求雙曲型方程的邊值問題實驗?zāi)康氖煜ふ莆针p曲型方程邊值問題的差分格式并程序?qū)崿F(xiàn)實驗原理與步驟:利用差分格式求下面波動方程混合邊
2025-07-27 03:07
【摘要】偏微分方程數(shù)值解試題(06B)參考答案與評分標準信息與計算科學專業(yè)一(10分)、設(shè)矩陣對稱,定義,.若,則稱稱是的駐點(或穩(wěn)定點).矩陣對稱(不必正定),求證是的駐點的充要條件是:是方程組的解解:設(shè)是的駐點,對于任意的,令,(3分),即對于任意的,,特別取,則有,得到.(3分)反之,若滿足,則對于任意的,,因此是的最小值點.(4分)評分標
2025-01-20 00:13
【摘要】微分方程數(shù)值解法實驗報告姓名:班級:學號:一:問題描述求解邊值問題:其精確解為問題一:取步長h=k=1/64,1/128,作五點差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點后四位的迭代值作為解的近似值,比較三
2025-07-27 17:34
【摘要】第8章偏微分方程數(shù)值解一、典型的偏微分方程介紹1.橢圓型方程:在研究有熱源穩(wěn)定狀態(tài)下的熱傳導,有固定外力作用下薄膜的平衡問題時,都會遇到Poisson方程Dyxyxfyuxu???????),(),(222202222??????yuxu
2024-08-18 11:00