【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】第3課時(shí)均值不等式1.均值不等式基礎(chǔ)知識(shí)梳理2.常用的幾個(gè)重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2024-08-06 03:54
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2024-08-17 10:01
2024-08-17 09:13
【摘要】第一講不等式和絕對(duì)值不等式1、不等式1、不等式的基本性質(zhì):①、對(duì)稱(chēng)性:傳遞性:_________②、,a+c>b+c③、a>b,,那么ac>bc;a>b,,那么ac<bc
2024-11-17 23:32
【摘要】不等式復(fù)習(xí)0ba???b1a1?22baba0ba??????b1a1?a1ba1??ba?22ba?0ba??*范例選粹[例題1]若,則下列不等式中,不能成立的是()A.
2024-11-17 08:12
【摘要】章末整合提升專(zhuān)題一:解不等式立,證明你的結(jié)論.例1:設(shè)f(x)=ax2+bx+c,若f(1)=72,問(wèn)是否存在a、b、c∈R,使得不等式x2+12≤f(x)≤2x2+2x+32對(duì)一切實(shí)數(shù)x都成解:由f(1)=72,得a+b+c=
2024-11-20 18:09
【摘要】排序不等式問(wèn)題探究A1A2AiAnB1B2BiBnOAB問(wèn)題探究12121122,,,,.nnnncccbbbSacacac???設(shè)是數(shù)組的任何一個(gè)排列何時(shí)取得最大值1211121321
2024-11-17 08:08
【摘要】......基本不等式習(xí)專(zhuān)題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-19 23:45
【摘要】第一篇:高三數(shù)學(xué)均值不等式 3eud教育網(wǎng)://百萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新! 均值不等式教案 教學(xué)目標(biāo): 教學(xué)重點(diǎn): 推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)...
2024-11-06 22:00
【摘要】均值不等式主講人:宋國(guó)鳴北京師范大學(xué)良鄉(xiāng)附屬中學(xué)中學(xué)數(shù)學(xué)高一新授課創(chuàng)設(shè)情境?校園內(nèi)有一個(gè)邊長(zhǎng)分別為a和b的矩形花壇,以及三個(gè)正方形花壇,?①第一個(gè)正方形花壇與矩形花壇的周長(zhǎng)相等,設(shè)它的邊長(zhǎng)為;?②第二個(gè)正方形花壇與矩形花壇的面積相等,設(shè)它的邊長(zhǎng)為;?③第三個(gè)正方形
2024-12-01 13:02
【摘要】第六章:不等式期末復(fù)習(xí):江蘇省前黃高級(jí)中學(xué)高一數(shù)學(xué)組呂楊春第一部分:基本概念1、比較大?。ㄗ鞑睢纸庖蚴健袛喾?hào))注:分解因式到不能分解為止;判斷符號(hào)的時(shí)候注意有時(shí)候要討論2、不等式的性質(zhì)是證明不等式和解不等式的基礎(chǔ)。不等式的基本性質(zhì)有:1)對(duì)稱(chēng)性:ab?ba;2)
【摘要】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價(jià)格購(gòu)進(jìn)電腦芯片。甲、乙兩公司共購(gòu)芯片兩次,每次的芯片價(jià)格不同,甲公司每次購(gòu)10000片芯片,乙公司每次購(gòu)10000元芯片,兩次購(gòu)芯片,哪家公司平均成本低?請(qǐng)給出證明過(guò)程。分析:設(shè)第一、第二次購(gòu)芯片的價(jià)格分別為每片a元和b元,列出甲、乙兩公司的平均價(jià)格,然后利用不等式知識(shí)論證。解:
2024-11-17 01:27
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會(huì)用基本不等式證明一些簡(jiǎn)單不等式;?會(huì)用基本不等式解決簡(jiǎn)單的最值問(wèn)題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-20 17:13
【摘要】第一篇:均值不等式應(yīng)用 均值不等式應(yīng)用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時(shí)取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14