【摘要】第三章不等式復(fù)習(xí)一、內(nèi)容組成-前后移動、左右拆分減輕負擔(dān),控制難度、螺旋上升意圖:二、特點分析-體現(xiàn)優(yōu)化、突出工具1.內(nèi)容安排上的特點把簡單的線性規(guī)劃和不等式放在一起,將線性規(guī)劃問題作為不等式來處理,突出了不等式的幾何意義以及在解決優(yōu)化問題中的作用,為理解不等式的本質(zhì),體現(xiàn)優(yōu)化思想奠定了基礎(chǔ)。
2024-08-29 01:47
【摘要】第一講不等式和絕對值不等式1、不等式1、不等式的基本性質(zhì):①、對稱性:傳遞性:_________②、,a+c>b+c③、a>b,,那么ac>bc;a>b,,那么ac<bc
2024-11-17 23:32
【摘要】不等式復(fù)習(xí)0ba???b1a1?22baba0ba??????b1a1?a1ba1??ba?22ba?0ba??*范例選粹[例題1]若,則下列不等式中,不能成立的是()A.
2024-11-17 08:12
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點:?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定
2024-11-17 03:52
【摘要】排序不等式問題探究A1A2AiAnB1B2BiBnOAB問題探究12121122,,,,.nnnncccbbbSacacac???設(shè)是數(shù)組的任何一個排列何時取得最大值1211121321
2024-11-17 08:08
【摘要】第六章:不等式期末復(fù)習(xí):江蘇省前黃高級中學(xué)高一數(shù)學(xué)組呂楊春第一部分:基本概念1、比較大?。ㄗ鞑睢纸庖蚴健袛喾枺┳ⅲ悍纸庖蚴降讲荒芊纸鉃橹梗慌袛喾柕臅r候注意有時候要討論2、不等式的性質(zhì)是證明不等式和解不等式的基礎(chǔ)。不等式的基本性質(zhì)有:1)對稱性:ab?ba;2)
【摘要】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價格購進電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請給出證明過程。分析:設(shè)第一、第二次購芯片的價格分別為每片a元和b元,列出甲、乙兩公司的平均價格,然后利用不等式知識論證。解:
2024-11-17 01:27
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-20 17:13
【摘要】必修5復(fù)習(xí)(一)解三角形1、掌握正、余弦定理及相應(yīng)的公式變形;2、掌握在各種條件下解三角形的方法;(邊長、角度、面積)3、理解在處理三角形問題時“邊角統(tǒng)一”思想;4、了解在實際問題中解三角形思想的運用;(距離、高度、角度、面積)例題:BBA
2024-11-17 01:52
【摘要】
2024-11-20 16:46
2024-11-20 17:26
【摘要】第四節(jié)不等式的綜合應(yīng)用基礎(chǔ)達標(biāo)1.(必修5P94第4題改編)已知(ax-1)(x-1)>0的解集是{x|x<1或x>3},則a的值為________.解析:由不等式解集是{x|x<1或x>3},可知=3,所以a=1.31a2.已知0<a<1,1log2l
2024-11-20 18:21
【摘要】類比基本不等式的形式,猜想對于3個正數(shù)a,b,c,可能有類比基本不等式的形式,猜想對于3個正數(shù)a,b,c,可能有,那么,當(dāng)且僅當(dāng)a=b=c時,等號成立.??Rcba,,33abccba???.,,3,,,:333等號成立時當(dāng)
2024-11-17 23:30
【摘要】第一課時不等式性質(zhì)及其應(yīng)用必修5第三章高中數(shù)學(xué)學(xué)業(yè)水平考試總復(fù)習(xí)不等式學(xué)習(xí)目標(biāo),理解兩個正數(shù)的基本不等式及其簡單應(yīng)用,關(guān)注學(xué)科內(nèi)綜合.,理解一元二次不等式的解法;知道二元一次不等式的幾何意義,理解用平面區(qū)域表示二元一次不等式組,關(guān)注實踐應(yīng)用.
【摘要】第三節(jié)基本不等式及其應(yīng)用基礎(chǔ)梳理1.基本不等式.2abab?(1)基本不等式成立的條件:________.(2)等號成立的條件:當(dāng)且僅當(dāng)________時取等號.a(chǎn)≥0,b≥0a=b2.幾個重要的不等式(1)a2+b2≥________(a,b∈R).(2)baab??___
2024-11-20 16:44