【摘要】組合(2)2022/8/302④要明確堆的順序時(shí),必須先分堆后再把堆數(shù)當(dāng)作元素個(gè)數(shù)作全排列.②若干個(gè)不同的元素局部“等分”有m個(gè)均等堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!①若干個(gè)不同的元素“等分”為m個(gè)堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!③非均分堆問題,只要按比例取出分完再用乘法原理作積
2025-08-11 16:59
【摘要】編號(hào): 時(shí)間:2021年x月x日 海納百川 頁碼:第8頁共8頁 高中數(shù)學(xué)排列組合解答方法技巧_ 插板法就是在n個(gè)元素間的(n-1)個(gè)空中插入若干個(gè)(b)個(gè)板,可以把n個(gè)元素分成(...
2025-04-14 03:52
【摘要】排列組合問題在實(shí)際應(yīng)用中是非常廣泛的,并且在實(shí)際中的解題方法也是比較復(fù)雜的,下面就通過一些實(shí)例來總結(jié)實(shí)際應(yīng)用中的解題技巧。:從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列。:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。:::與順序有關(guān)的為排列問題,與順序無關(guān)的為組合問題。例1學(xué)
2025-08-11 18:17
【摘要】思博教育思想點(diǎn)燃希望博學(xué)鑄就輝煌排列組合一、選擇題1.從6名男生和2名女生中選出3名志愿者,其中至少有1名女生的選法共有 (A) A.36種 B.30種 C.42種 D.60種2.將5名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去任職,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,不同的分配方案有
2025-08-11 18:42
【摘要】人教版高中數(shù)學(xué)全部教案兩個(gè)基本原理一、教學(xué)目標(biāo)1、知識(shí)傳授目標(biāo):正確理解和掌握加法原理和乘法原理2、能力培養(yǎng)目標(biāo):能準(zhǔn)確地應(yīng)用它們分析和解決一些簡(jiǎn)單的問題3、思想教育目標(biāo):發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問題和解決問題的能力二、教材分析:加法原理,乘法原理。解決方法:利用簡(jiǎn)單的舉例得到一般的結(jié)論.:加法原理,乘法原理的區(qū)分。解決方法:運(yùn)用對(duì)比的方法比
2025-04-22 13:29
【摘要】高中數(shù)學(xué)排列與組合(一)典型分類講解,1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置.先排末位共有然后排首位共有最后排其它位置共有由分步計(jì)數(shù)原理得練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多
2025-04-10 05:12
【摘要】完美WORD格式運(yùn)用兩個(gè)基本原理例1.n個(gè)人參加某項(xiàng)資格考試,能否通過,有多少種可能的結(jié)果?例2.同室四人各寫了一張賀年卡,先集中起來,然后每人從中拿一張別人的賀年卡,則四張賀年卡不同的分配方式有()(A)6種(B)9種
2025-04-01 05:42
2025-07-28 23:09
【摘要】高考數(shù)學(xué)輕排列組合解題的二十一種方法(加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,…,在第類辦法中有種不同的方法,那么完成這件事共有:種不同的方法.(乘法原理)完成一件事,需要分成個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法,…,做第步有種不同的方法,那么完成這件事共有:種不同的方法.
2025-08-11 18:24
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-31 02:36
【摘要】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個(gè)數(shù)字.可組成多少個(gè)沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①?zèng)]有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個(gè)位數(shù)字只能是0...
2024-10-21 11:00
【摘要】高中數(shù)學(xué)排列組合及概率的基本公式、概念及應(yīng)用1分類計(jì)數(shù)原理(加法原理):.分步計(jì)數(shù)原理(乘法原理):.2排列數(shù)公式:==.(,∈N*,且).規(guī)定.3組合數(shù)公式:===(∈N*,,且).組合數(shù)的兩個(gè)性質(zhì):(1)=;(2)+=.規(guī)定.4二項(xiàng)式定理;二項(xiàng)展開式的通項(xiàng)公式.的展開式的系數(shù)關(guān)系:;;。5互斥事件A,B分別發(fā)生的概率的和:P(A+
【摘要】高考數(shù)學(xué)復(fù)習(xí)解排列組合應(yīng)用題的21種策略排列組合問題是高考的必考題,它聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,不易掌握,實(shí)踐證明,掌握題型和解題方法,識(shí)別模式,熟練運(yùn)用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48
2025-08-01 07:24
【摘要】高中數(shù)學(xué)“排列、組合、概率”專題訓(xùn)練一、選擇題(每題4分,共48分)高三班號(hào)姓名1、已知集合A={1,3,5,7,9,11},B={1,7,17}.試以集合A和B中各取一個(gè)數(shù)作為點(diǎn)的坐標(biāo),在同一直角坐標(biāo)系中所確定的不同點(diǎn)的個(gè)數(shù)是A、32 B、33 C、34 D、362、以1,2,3,…,9這九個(gè)數(shù)學(xué)中任取兩個(gè),
2025-01-21 09:15
【摘要】排列組合公式復(fù)習(xí)排列與組合 考試內(nèi)容:兩個(gè)原理;排列、排列數(shù)公式;組合、組合數(shù)公式?! 】荚囈螅?)掌握加法原理及乘法原理,并能用這兩個(gè)原理分析和解決一些簡(jiǎn)單的問題?! ?)理解排列、組合的意義。掌握排列數(shù)、組合數(shù)的計(jì)算公式,并能用它們解決一些簡(jiǎn)單的問題?! ≈攸c(diǎn):兩個(gè)原理尤其是乘法原理的應(yīng)用?! ‰y點(diǎn):不重不漏?! ≈R(shí)要點(diǎn)及典型例
2025-03-30 12:35