【摘要】函數(shù)零點(diǎn)問題一、基礎(chǔ)知識回顧1.函數(shù)零點(diǎn)概念對函數(shù),把使的實(shí)數(shù)叫做函數(shù)的零點(diǎn).同時(shí)我們還要知道函數(shù)零點(diǎn)、方程的根和函數(shù)圖像的關(guān)系:函數(shù)有零點(diǎn)方程有實(shí)數(shù)根
2025-03-30 12:18
【摘要】函數(shù)零點(diǎn)問題【教學(xué)目標(biāo)】知識與技能:1.理解函數(shù)零點(diǎn)的定義以及函數(shù)的零點(diǎn)與方程的根之間的聯(lián)系,掌握用連續(xù)函數(shù)零點(diǎn)定理及函數(shù)圖像判斷函數(shù)零點(diǎn)所在的區(qū)間與方程的根所在的區(qū)間.2.結(jié)合幾類基本初
【摘要】10函數(shù)零點(diǎn)的個數(shù)問題一、知識點(diǎn)講解與分析:1、零點(diǎn)的定義:一般地,對于函數(shù),我們把方程的實(shí)數(shù)根稱為函數(shù)的零點(diǎn)2、函數(shù)零點(diǎn)存在性定理:設(shè)函數(shù)在閉區(qū)間上連續(xù),且,那么在開區(qū)間內(nèi)至少有函數(shù)的一個零點(diǎn),即至少有一點(diǎn),使得。(1)在上連續(xù)是使用零點(diǎn)存在性定理判定零點(diǎn)的前提(2)零點(diǎn)存在性定理中的幾個“不一定”(假設(shè)連續(xù))①若,則的零點(diǎn)不一定只有一個,可以有多個②若,
2025-03-30 04:05
【摘要】函數(shù)的零點(diǎn)畫出函數(shù)圖像,指出x取哪些值時(shí),y=0?y0?y0?2y=x-2x-3xoy-13(1)再求方程的實(shí)數(shù)根,觀察函數(shù)與方程的聯(lián)系?2x-2x-3=0我們把使二次函數(shù)
2024-11-09 17:56
【摘要】教材分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,函數(shù)與方程思想是高考必考的思想方法.本節(jié)是在學(xué)習(xí)了前兩章函數(shù)的性質(zhì)的基礎(chǔ)上,結(jié)合函數(shù)的圖象和性質(zhì)來判斷方程的根的存在性及根的個數(shù),從而了解函數(shù)的零點(diǎn)與方程的根的關(guān)系,掌握函數(shù)在某個區(qū)間上存在零點(diǎn)的判定方法;為下節(jié)“二分法求方程的近似解”和后續(xù)學(xué)習(xí)的算法提供了基礎(chǔ).因此本節(jié)內(nèi)容具有
2024-08-14 17:40
【摘要】復(fù)習(xí)回顧:f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)判別式方程ax2+bx+c=0的根函數(shù)y=ax2+bx+c的零點(diǎn)?>0兩不相等實(shí)根兩個零點(diǎn)?=0兩相等實(shí)根一個零點(diǎn)?<0沒有實(shí)根
2024-11-18 22:54
【摘要】函數(shù)與方程一、考點(diǎn)聚焦1.函數(shù)零點(diǎn)的概念對于函數(shù),我們把使的實(shí)數(shù)x叫做函數(shù)的零點(diǎn),注意以下幾點(diǎn):(1)函數(shù)的零點(diǎn)是一個實(shí)數(shù),當(dāng)函數(shù)的自變量取這個實(shí)數(shù)時(shí),其函數(shù)值等于零。(2)函數(shù)的零點(diǎn)也就是函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo)。(3)一般我們只討論函數(shù)的實(shí)數(shù)零點(diǎn)。(4)求零點(diǎn)就是求方程的實(shí)數(shù)根。2、函數(shù)零點(diǎn)的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-05-22 02:09
【摘要】二次函數(shù)零點(diǎn)問題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
2025-03-30 06:28
【摘要】函數(shù)的零點(diǎn)【教學(xué)目標(biāo)】1、了解函數(shù)零點(diǎn)的概念及函數(shù)零點(diǎn)的等價(jià)描述;2、能利用二次函數(shù)的圖象與判別式的符號,判斷一元二次方程根的存在性及根的個數(shù);3、理解判斷函數(shù)零點(diǎn)存在性的結(jié)論并能研究簡單的函數(shù)零點(diǎn)的存在性問題;4、體現(xiàn)、感受并理解方程和函數(shù)圖象在零點(diǎn)問題中的應(yīng)用,滲透數(shù)形結(jié)合思想,運(yùn)用數(shù)形結(jié)合來研究和解決數(shù)學(xué)問題,并能應(yīng)用從特殊到一般的數(shù)學(xué)方法去探索和認(rèn)識數(shù)學(xué)知識。
2025-04-22 23:40
【摘要】方程的根與函數(shù)的零點(diǎn)方程解法史話:數(shù)學(xué)家方臺納的故事1535年,在意大利有一條轟動一時(shí)的新聞:數(shù)學(xué)家奧羅挑戰(zhàn)數(shù)學(xué)家方臺納,奧羅給方臺納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時(shí)間為20天,方臺納埋頭苦干,終于在最后一天解決了這個問題。方程的求解經(jīng)
2024-11-17 04:14
【摘要】高三數(shù)學(xué)函數(shù)的圖像、零點(diǎn)一:選擇題f(x)=x2﹣2x+b在區(qū)間(2,4)內(nèi)有唯一零點(diǎn),則b的取值范圍是( D?。〢、RB、(﹣∞,0)C、(﹣8,+∞)D、(﹣8,0),用二分法求方程在(1,3)內(nèi)近似解的過程中,f(1)>0,f()<0,f(2)<0,f(3)<0,則方程的根落在區(qū)間( A?。〢、(1,)B、(,2)C、
2025-03-30 12:17
【摘要】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實(shí)數(shù)根x1=-1,x2=3x1=x2=1無實(shí)數(shù)根(-1,0)、(3,0)(1,0)無交點(diǎn)x2-2x-
2024-12-02 13:41
【摘要】方程的根和函數(shù)的零點(diǎn)思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2024-10-19 16:46
【摘要】與三角函數(shù)有關(guān)的零點(diǎn)問題1、【2015湖北】函數(shù)的零點(diǎn)個數(shù)為______.【答案】2【解析】因?yàn)椋?,所以函?shù)的零點(diǎn)個數(shù)為函數(shù)與圖象的交點(diǎn)的個數(shù),函數(shù)與圖象如圖,由圖知,兩函數(shù)圖象有2個交點(diǎn),所以函數(shù)有2個零點(diǎn).【方法技巧歸納】利用函數(shù)圖象處理函數(shù)的零點(diǎn)(方程根)主要有兩種策略:(1)確定函數(shù)零點(diǎn)的個數(shù):利用圖象研究與軸的交點(diǎn)個數(shù)或轉(zhuǎn)化成兩個函數(shù)圖象的交點(diǎn)個數(shù)定性判斷;(2
2025-03-30 05:48
【摘要】一、知識回顧與鞏固訓(xùn)練DBB函數(shù)零點(diǎn)的定義:方程的根與函數(shù)的零點(diǎn)的關(guān)系一、知識回顧與鞏固訓(xùn)練思考:1、零點(diǎn)是不是點(diǎn)?2、零點(diǎn)是不是f(0)?一、知識回顧與鞏固訓(xùn)練函數(shù)零點(diǎn)存在性定理一個重要結(jié)論:若函數(shù)y=f(x)在其定義域內(nèi)的某個區(qū)間上是單調(diào)的
2024-11-21 12:10