【摘要】一點(diǎn)擊雙基題1(04全國(guó)Ⅳ)函數(shù)的最大值為.題2(03全國(guó))函數(shù)的最大值為_(kāi)_.AD題3(05浙江)已知k-4則函數(shù)的最小值為().(A)1(B)-1(C)2k+1(D)-2k+1
2024-11-15 02:34
【摘要】三角函數(shù)的最值問(wèn)題溫州第二高級(jí)中學(xué)例1:解:例2:解:例3:解:例4
2024-11-14 19:16
【摘要】三角函數(shù)的最值問(wèn)題新沂市第一中學(xué)高三數(shù)學(xué)組授課人:安勇重點(diǎn):讓學(xué)生能運(yùn)用三角函數(shù)概念、圖象、性質(zhì)、同角三角函數(shù)的基本關(guān)系式、和差角公式等求有關(guān)最值問(wèn)題;掌握求最值常見(jiàn)思想方法。難點(diǎn):利用三角函數(shù)的性質(zhì)求有關(guān)最值。下頁(yè)=sinx,y=cosx的值域是————。=asinx+
2024-11-20 16:46
【摘要】三角函數(shù)的最值問(wèn)題泥城中學(xué)田素偉:(1)會(huì)根據(jù)正弦和余弦函數(shù)的有界性和單調(diào)性求簡(jiǎn)單三角函數(shù)的最值和值域(2)運(yùn)用轉(zhuǎn)化,整體代換等數(shù)學(xué)思想,通過(guò)變形,換元等方法轉(zhuǎn)化為代數(shù)函數(shù)求其在給定區(qū)間內(nèi)的三角函數(shù)的最值和值域通過(guò)對(duì)最值問(wèn)題的探索和解決,提高運(yùn)算能力,增強(qiáng)分析問(wèn)題和解決問(wèn)題的能力,體現(xiàn)數(shù)學(xué)思想方法在解決三角函數(shù)的最值
2024-11-29 21:37
【摘要】高三備課組三角函數(shù)的求值高考要求三角函數(shù)式的化簡(jiǎn)和求值是高考考查的重點(diǎn)內(nèi)容之一通過(guò)本節(jié)的學(xué)習(xí)使考生掌握化簡(jiǎn)和求值問(wèn)題的解題規(guī)律和途徑,特別是要掌握化簡(jiǎn)和求值的一些常規(guī)技巧,以?xún)?yōu)化我們的解題效果,做到事半功倍.知識(shí)整合:1、熟記三角函數(shù)有關(guān)公式:同角三角函數(shù)關(guān)系,誘導(dǎo)公式
2024-11-18 00:29
【摘要】湖南師大附中劉東紅能進(jìn)行弧度與角度的互化,理解任意角的三角函數(shù)的定義,會(huì)推導(dǎo)并應(yīng)用誘導(dǎo)公式。理解同角三角函數(shù)的基本關(guān)系式:22sincos1,(),sintan(,)cos2xxxRxxxkkZx?????????一、同角關(guān)系的應(yīng)用
2024-11-18 07:32
【摘要】求三角函數(shù)的最值柳市中學(xué)陳文麗求三角函數(shù)最值的幾種基本類(lèi)型☆☆☆☆其它類(lèi)型引入輔助角化為求解方法同類(lèi)型①問(wèn)題1變式1:若在上(2)中增加一個(gè)條件,即:(0≤x≤)時(shí)又如何求解呢?變式2:若
【摘要】三角函數(shù)求最值問(wèn)題總結(jié)在三角函數(shù)這部分,求最值或周期是常規(guī)性題目,在這種題型下,我覺(jué)得解決問(wèn)題可以采用兩種化簡(jiǎn)思路:(1)化簡(jiǎn)成BwxAy???)sin(?此時(shí)不僅可以求最值,還可以求周期。(2)化簡(jiǎn)成關(guān)于正弦或余弦的一元二次函數(shù)形式,此時(shí)一般只要求求出最值。例題解析:例1、)42sin(23????xy求
2024-11-04 14:07
【摘要】三角函數(shù)的恒等變形與求值寶應(yīng)中學(xué)高三數(shù)學(xué)文科備課組一、要點(diǎn)掃描?1、了解用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過(guò)程。?2、能利用已知條件,正確合理地運(yùn)用三角恒等變形公式進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值及恒等式證明。二、課前熱身?1.若,則
2024-11-20 01:26
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件23《三角函數(shù)-三角形中的三角函數(shù)》三角形中的有關(guān)公式:三角形三內(nèi)角之和為?,即A+B+C=?.注任意兩角和與第三個(gè)角總互補(bǔ);任意兩半角和與第三個(gè)角的半角總互余;銳角三角形?三內(nèi)角都是銳角?任兩角和都是鈍角設(shè)△ABC中,角A、
2024-11-19 08:50
【摘要】第31講三角形中的三角函數(shù)、余弦定理將三角形的邊角轉(zhuǎn)化.,三角形內(nèi)三角函數(shù)的求值及三角恒等式的證明.1.△ABC中,已知sinA=2sinBcosC,sin2A=sin2B+sin2C,則三角形的形狀是()D由sin2A=s
2024-11-17 08:50
【摘要】求三角函數(shù)的周期、單調(diào)區(qū)間、最值。。例1】判斷下列函數(shù)的奇偶性:(1)(2)(3)【例2】求下列函數(shù)的周期:(1)(2)(3)(4)(5)
2024-08-18 10:58
【摘要】精品資源求三角函數(shù)最值的幾種方法一、利用函數(shù)的增減性例1.若,求的最小值。解:設(shè),顯然函數(shù)是sinx的減函數(shù),且即,故也是sinx的減函數(shù)?!喈?dāng),即時(shí),的最小值是5。二、利用三角函數(shù)的有界性例2.求函數(shù)的最值。解:由已知得:所以由,得:即
2025-04-15 02:32
【摘要】BCA∠A的對(duì)邊a∠A的鄰邊bcaA斜邊的對(duì)邊∠cbA斜邊的鄰邊∠bAaA的鄰邊的對(duì)邊∠∠aAbA的對(duì)邊的鄰邊∠∠正弦函數(shù)余弦函數(shù)正切函數(shù)余切函數(shù)sinAcosAtanAcotAabAbaAcbAcaA
2024-08-08 12:09
【摘要】東海高級(jí)中學(xué)20xx-20xx學(xué)年度高三理科數(shù)學(xué)單元檢測(cè)題(三角函數(shù))一.填空題()sin()1(0,||π)fxAx????????對(duì)任意實(shí)數(shù)t,都有????ππ33ftft????.記()cos()1gxAx?????,則π()3g?-
2024-08-10 16:29