【摘要】§三重積分一、三重積分的概念定義設(shè)在有界閉體有定義.對(duì)任意分法:將V分成個(gè)小體.設(shè)其體分別為作和式:(1)),,(zyxfVnnVVV,,,21?TnVV??,,1?),,
2024-10-07 19:20
【摘要】主要內(nèi)容介紹典型例題選講課堂自主練習(xí)第九章重積分三重積分的練習(xí)第二次習(xí)題課理解的概念熟練掌握的概念基本概念三重積分的定義、性質(zhì)、注意性質(zhì)中的積分中值定理
2024-12-14 00:43
【摘要】上一頁(yè)下一頁(yè)第三節(jié)三重積分一、引例二、在直角坐標(biāo)系下計(jì)算三重積分二、在柱面坐標(biāo)系下計(jì)算三重積分三、在球面坐標(biāo)系下計(jì)算三重積分四、小結(jié)五、作業(yè)上一頁(yè)下一頁(yè)一、引例?空間物體的質(zhì)量定義:設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個(gè)小閉區(qū)域1
2025-01-20 04:37
【摘要】習(xí)題課重積分(二重)習(xí)題二重積分計(jì)算一的解題程序??Ddyxf?),((1)畫(huà)出積分域D的草圖。(2)選擇坐標(biāo)系,主要根據(jù)積分或D的形狀,有時(shí)也參看被積函數(shù)的形式,見(jiàn)表11-1。表11-1(3)選擇積分次序選序的原則:①先積分的容易,并
2024-12-14 03:07
【摘要】一、三重積分的定義二、三重積分的三、小結(jié)設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個(gè)小閉區(qū)域1v?,2v?,,?nv?,其中iv?表示第i個(gè)小閉區(qū)域,也表示它的體積,在每個(gè)iv?上任取一點(diǎn)),,(iii???作乘積iiiivf
2025-01-25 18:29
【摘要】一、三重積分的定義二、三重積分的計(jì)算三、小結(jié)第三節(jié)三重積分的計(jì)算設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個(gè)小閉區(qū)域1v?,2v?,,?nv?,其中iv?表示第i個(gè)小閉區(qū)域,也表示它的體積,在每個(gè)iv?上任取一點(diǎn)),,(
2025-01-25 14:44
【摘要】首頁(yè)上頁(yè)返回下頁(yè)結(jié)束三重積分的變量代換柱面坐標(biāo)代換球面坐標(biāo)代換三重積分的對(duì)稱性首頁(yè)上頁(yè)返回下頁(yè)結(jié)束.)],,(),,,(),,,([),,(:)3(;0),,(),,(),,()2(),,(),,,(),,,()1(),,(),,,(),,,(:),,(3dwd
2025-08-01 12:13
【摘要】典型例題例1.)16(log2)1(的定義域求函數(shù)xyx???解,0162??x,01??x,11??x????????214xxx,4221????xx及).4,2()2,1(?即例2).(.1,0,2)1()(xfxxxxx
2025-05-01 03:28
【摘要】定積分習(xí)題課問(wèn)題1:曲邊梯形的面積問(wèn)題2:變速直線運(yùn)動(dòng)的路程存在定理可積條件定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式)()()(aFbFdxxfba???一、主要內(nèi)容1、問(wèn)題的提出實(shí)例1(求曲邊梯形的面積A)in
2025-07-24 21:56
【摘要】§三重積分及其計(jì)算一、三重積分的概念設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個(gè)小閉區(qū)域1v?,2v?,,?nv?,其中iv?表示第i個(gè)小閉區(qū)域,也表示它的體積,在每個(gè)iv?上任取一點(diǎn)),,(iii???作乘積iiiivf??)
2025-01-25 14:36
【摘要】1補(bǔ)充輪換對(duì)稱性結(jié)論:若D關(guān)于x,y滿足輪換對(duì)稱性(將D的邊界曲線方程中的x與y交換位置,方程不變),則(,)dd(,)dd.DDfxyxyfyxxy?????211證yxyxybxaIDdd)()()()(?????????設(shè)的對(duì)稱性得由區(qū)域關(guān)于直線x
2025-02-23 20:28
【摘要】習(xí)題課數(shù)值微分和數(shù)值積分用三點(diǎn)公式求在x=,,,f(x)的函數(shù)值如下所示xif(xi)2)1(1)(xxf??解:x0=,x1=,x2=;h=hxfxfxfxf2)()(4)(3)('2100????67
2025-08-01 01:37
【摘要】積分法原函數(shù)基本積分表第二換元法直接積分法分部積分法不定積分第一換元法一、主要內(nèi)容原函數(shù)如果在區(qū)間I內(nèi),可導(dǎo)函數(shù))(xF的導(dǎo)函數(shù)為)(xf,即Ix??,都有)()(xfxF??或
【摘要】曲線積分與曲面積分習(xí)題課(一)曲線積分與曲面積分(二)各種積分之間的聯(lián)系一、主要內(nèi)容曲線積分曲面積分對(duì)面積的曲面積分對(duì)坐標(biāo)的曲面積分對(duì)弧長(zhǎng)的曲線積分對(duì)坐標(biāo)的曲線積分計(jì)算計(jì)算聯(lián)系聯(lián)系(一)曲線積分與曲面積分曲線積分
2025-07-25 19:09
【摘要】YunnanUniversity§2.三重積分的計(jì)算直角坐標(biāo)系中將三重積分化為三次積分.一、化三重積分為三次積分)(1xyy?)(2xyy?如圖,,Dxoy面上的投影為閉區(qū)域在閉區(qū)域?),,(:),,(:2211yxzzSyxzzS??,),(作直線過(guò)點(diǎn)Dyx
2025-01-26 09:41