【摘要】課件設計:北師大南山附校榮紅莉教材分析教法學法教學過程教學反饋重點難點教學目標《平面向量坐標運算》教學說明教材的地位和作用本節(jié)內(nèi)容在教材中有著承上啟下的作用。向量用坐標表示后,對立體幾何教材的改革也有著深遠的意義,可使空間結構系統(tǒng)
2024-11-18 07:56
【摘要】第四單元平面向量與復數(shù)第一節(jié)平面向量的概念及其線性運算基礎梳理大小方向長度模記作0長度為的向量,其方向是任意的零向量向量模既有又有的量;向量的大小叫做向量的(或)向量表
2024-11-20 01:26
【摘要】北師大南山附中榮紅莉Email:平面向量的坐標運算xy0A(x,y)a《平面向量坐標運算》教學說明教材分析教法學法教學過程教學評價重點難點教學目標教材的地位和作用承上啟下;推進了立體幾何的改革;使空間結構系
2024-11-17 00:34
【摘要】共線向量與共面向量ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習在立方體AC1中,點E是面A’C’的中心,求下列各式中的x,y.EABCDDCBA)()1(''
2025-07-31 15:38
【摘要】高考總復習.理科.數(shù)學第八章平面向量高考總復習.理科.數(shù)學考綱分解解讀高考總復習.理科.數(shù)學(1)了解向量的實際背景.(2)理解平面向量的概念,理解兩個向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運算,并理解其幾何意義.
2025-08-07 17:58
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-20 17:25
【摘要】第1頁共5頁學大教育高三第一輪復習數(shù)學-向量及向量的基本運算一、教學目標:1.理解向量的有關概念,掌握向量的加法與減法、實數(shù)與向量的積、向量的數(shù)量積及其運算法則,理解向量共線的充要條件.2.會用向量的代數(shù)運算法則、三角形法則、平行四邊形法則解決有關問題.不斷培養(yǎng)并深化用數(shù)形結合的思想方法解題的自覺意識.二、教學重點:向量的概
2025-01-13 19:43
【摘要】2020屆高考數(shù)學復習強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2024-11-18 00:27
【摘要】復習回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:用有向線段表示字母表示法:用小寫字母表示,或者用表示向量的有向線段的起點和終點字母表示。相等向量:長度相等且方向相同的向量ABCD2、平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法
2024-11-17 01:24
【摘要】1、平面向量的坐標表示與平面向量分解定理的關系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【摘要】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長度為零的向量長度為零的向量模為1的向量模為1的向量長度相等且方向相反的向量長
2024-12-02 17:38
【摘要】高三數(shù)學總復習實數(shù)與向量的積宜良二中陳東知識要點回顧實數(shù)與向量的積定義運算律向量共線的充要條件平面向量基本定理注意:例題講解[分析]:(1)延伸·拓展OA
【摘要】目錄上頁下頁返回結束*三、向量的混合積第三節(jié)一、兩向量的數(shù)量積二、兩向量的向量積向量的乘法運算第七章目錄上頁下頁返回結束1M一、兩向量的數(shù)量積沿與力夾角為的直線移動,??W1.定義設向量
2025-08-11 18:35
【摘要】零向量、單位向量概念:向量的概念:向量的表示方法:共線向量與平行直線的關系:平行向量定義:相等向量定義:ABCABC問題1:如圖,某人從點A到點B,再從點B按原方向到C點,則兩次位移的和可用哪個向量表示?由此可以得到什么結論?問題2:如圖,某人從點A到點B,再從點B按
2025-08-11 04:08
【摘要】空間向量的數(shù)量積運算一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作:對空間任意兩個向量的充要條件是存在實數(shù)λ使推論:如果為經(jīng)過已知點A且平行已知
2024-11-18 00:24