【摘要】平面向量的坐標(biāo)運算鄭德松平面向量的坐標(biāo)運算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問題:若已知=(1,3),=(5,1),
2024-11-20 16:44
【摘要】平面向量的坐標(biāo)運算平面向量共線的坐標(biāo)表示問題提出?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2025-07-25 00:10
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-11-18 00:27
【摘要】2022屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2025-07-31 15:40
【摘要】§平面向量的坐標(biāo)運算(二)知識回顧平面向量的坐標(biāo)表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2024-11-17 06:28
【摘要】××××中學(xué)教學(xué)設(shè)計方案年月日星期第節(jié)課題平面向量的坐標(biāo)運算章節(jié)第五章第二節(jié)教學(xué)目的知識目標(biāo)1.了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,會用坐標(biāo)形式進行向量
2024-08-17 16:11
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 04:47
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修42.3.3《平面向量的坐標(biāo)運算》教學(xué)目的?(1)理解平面向量的坐標(biāo)的概念;?(2)掌握平面向量的坐標(biāo)運算;?(3)會根據(jù)向量的坐標(biāo),判斷向量是否共線.?教學(xué)重點:平面向量的坐標(biāo)運算?教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.
2024-11-19 06:00
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-20 19:04
【摘要】復(fù)習(xí)引入?.(1)21向量的一組基底有叫做表示這一平面內(nèi)所,我們把不共線向量ee(2)基底不惟一,關(guān)鍵是不共線;進行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時eea??若e1、e2是同一平面內(nèi)的兩個不共線向量
2024-11-25 15:02
【摘要】海鹽高級中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2024-08-18 06:24
【摘要】平面向量的坐標(biāo)運算教案一、教學(xué)目標(biāo)1、知識與技能:掌握平面向量的坐標(biāo)運算;2、過程與方法:通過對共線向量坐標(biāo)關(guān)系的探究,提高分析問題、解決問題的能力。3情感態(tài)度與價值觀:學(xué)會用坐標(biāo)進行向量的相關(guān)運算,理解數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系。二、教學(xué)重點與難點教學(xué)重點:平面向量的坐標(biāo)運算。教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確.三、教學(xué)設(shè)想(一
2025-04-23 01:00
2024-11-20 17:12
【摘要】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對應(yīng)向量a1.以原點O為起點作OA=a,點A的位置由誰確定?2.點A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2024-08-18 06:17
【摘要】第二章平面向量第二章2.3平面向量的基本定理及坐標(biāo)表示第二章2.平面向量的正交分解及坐標(biāo)表示2.平面向量的坐標(biāo)運算課前自主預(yù)習(xí)課堂典例講練課后強化作業(yè)課前自主預(yù)習(xí)溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-25 16:22