【摘要】15級高二數(shù)學導學案1兩個基本計數(shù)原理(1)一、課前自主學習:引入:(1)從甲地到乙地有3條公路、2條鐵路,某人要從甲地到乙地,共有多少種不同的方法?(2)從甲地到乙地有3條道路,從乙地到丙地有2條道路,那么從甲地經(jīng)乙地到丙地共有多少種不同的方法?1、分類計數(shù)原理:完成一件事有n類方式,在第1類方
2025-08-11 00:06
【摘要】§19排列組合二項式定理分類解決排列組合綜合性問題的要注意的問題1.認真審題,弄清要做什么事;2.怎樣做才能完成所要做的事,即采取分步還是分類,確定分多少步及多少類;3.確定是排列問題(有序)還是組合(無序)問題,元素總數(shù)是多少及取出多少個元素;4.注意積累排列組合問題的方法,以快速準確求解.
2025-08-11 01:16
【摘要】?加法原理和乘法原理(1-1)從甲地到乙地,可以乘火車,也可以乘汽車,一天中火車有3班,汽車有2班,那么一天中,乘坐這些交通工具從甲地到乙地共有多少種方法?分析:因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以,共有3+2=5種不同的走法,如圖所示(1-2)從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船一天中,火車有4班,
2025-08-11 18:32
【摘要】 [鍵入文檔標題] 排列、組合 、組合數(shù)中. (1)排列數(shù)公式 ;。 如(1)1!+2!+3!+…+n!()的個位數(shù)字為; (2)滿足的= (2)組合數(shù)公式 ;規(guī)定,. 如已知...
2024-11-19 05:35
【摘要】問題1把abcd平均分成兩組有_____多少種分法?結論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數(shù)。abcdacbdadbccdbdbcadacab這兩個在分組時只能算一個mmA均分不安排工作的問題例1:12本不
2025-08-11 07:24
【摘要】第十章排列組合、二項式定理班級:姓名:1、若nxx)1(?展開式中第32項與第72項的系數(shù)相同,那么展開式的中間一項的系數(shù)為(A)52104C(B)52103C(C)52102C(D)51102
2024-12-15 21:43
【摘要】解決排列組合中涂色問題的常見方法及策略與涂色問題有關的試題新穎有趣,其中包含著豐富的數(shù)學思想。解決涂色問題方法技巧性強且靈活多變,故這類問題的利于培養(yǎng)學生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學生的智力。本文擬總結涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標①
2025-08-01 07:24
【摘要】例1.6本不同的書,按下列要求各有多少種不同的選法:(1)分成1本、2本、3本三組;(2)分給甲、乙、丙三人,其中一個人1本,一個人2本,一個人3本;解:(1)這是“不均勻分組”問題,一共有種方法.12365360CCC?(2)
2024-11-29 02:12
【摘要】排列教學目標:。并能解決一些簡單應用題。,理解并掌握解決排列應用題的常用方法。。重點:理解概念,公式推導。難點:排列問題的綜合應用做一件事情,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……
2025-07-31 13:58
【摘要】1、基本概念和考點2、合理分類和準確分步3、特殊元素和特殊位置問題4、相鄰相間問題5、定序問題6、分房問題7、環(huán)排、多排問題12、小集團問題10、先選后排問題9、平均分組問題11、構造模型策略8、實驗法(枚舉法)13、其它特殊方法排列組合應用題解法綜述(目錄)名稱內容
2025-08-22 01:49
【摘要】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個??例15:計劃在某畫廊展開10幅不同的畫,
2024-11-18 22:56
【摘要】第二十一章排列組合二項式定理知識結構網(wǎng)絡圖:排列與組合二項式定理基本原理排列組合排列數(shù)公式組合數(shù)公式組合數(shù)的兩個性質二項式定理二項式系數(shù)的性質一、分類計數(shù)原理(加法原理):完成一件事情,有n類方式,在第1類方式中有m1種不
2025-08-11 00:04
【摘要】;能運用解題策略解決簡單的綜合應用題。提高學生解決問題分析問題的能力合問題.教學目標計數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-17 13:22
【摘要】排列組合排列問題1從甲、乙、丙3名同學中選出2名參加某天的一項活動,其中1名同學參加上午的活動,另1名同學參加下午的活動,有多少種不同的方法?問題引導開門見山3種2種3×2=6種甲乙丙乙甲丙丙甲乙分析:樹形圖
【摘要】引入:前面我們已經(jīng)學習和掌握了排列組合問題的求解方法,下面我們要在復習、鞏固已掌握的方法的基礎上,學習和討論排列、組合的綜合問題。和應用問題。問題:解決排列組合問題一般有哪些方法?應注意什么問題?解排列組合問題時,當問題分成互斥各類時,根據(jù)加法原理,可用分類法;當問題考慮先后次序時,根據(jù)乘法原
2025-08-13 14:47