【摘要】一、復習目標:1、理解直線的方向向量與平面的法向量并會求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點:概念與方法的運用三、教學方法:探析歸納,講練結合。四、教學過程(一)、
2024-11-20 18:10
2024-11-17 08:06
【摘要】空間向量在立體幾何中的應用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關證明及計算問題。一、空間向量的運算及其坐標運算的掌握二、立體
2025-01-14 14:05
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運
2024-11-20 01:34
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2024-11-17 01:53
【摘要】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入(1)定義:設a,b是兩條異面直線,過空
2025-06-22 12:13
【摘要】1上杭縣高級中學講課人:周文才時間:07年12月14日2345678所以:解:以點C為坐標原點建立空間直角坐標系如圖所示,設則C||所以與所成角的余弦值為9設平面xyz點評:找到
2024-11-20 16:42
【摘要】空間向量之應用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-14 13:41
【摘要】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點線面位置關系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
【摘要】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉化為二面角的兩個面的
2025-08-11 10:54
【摘要】第一篇:向量方法在立體幾何教學中的應用 轉自論文部落論文范文發(fā)表論文發(fā)表 向量方法在立體幾何教學中的應用 作者:王龍生 摘要:在江蘇省對口單招數(shù)學試卷中,,是溝通代數(shù)與幾何的工具之一,,可以將...
2024-11-16 06:15
【摘要】第四課文化的繼承性與文化發(fā)展課標要求解析中華民族傳統(tǒng)文化在現(xiàn)實生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習俗的價值?!魪墓偶墨I中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚中華傳統(tǒng)美德在今天的作用。◆設計展板:我國一些建筑、藝術、服飾等風格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結合之美?;居^點1、
2025-05-17 22:03
【摘要】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復習建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關系以及幾何體的有關問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-17 12:27
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-08 17:17
【摘要】空間向量在立幾中應用空間向量在立體幾何中的應用空間向量在立幾中應用利用向量判斷位置關系利用向量可證明四點共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運算來判斷,這是數(shù)形結合的典型問題空間向量在立幾中應用例1、在正方體AC1中,E、F分別是BB1、CD的中點,求
2025-07-26 06:40