【摘要】復(fù)習(xí)引入1、什么是隨機事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。試驗的每一個可能的結(jié)果稱為基本事件。2、什么是隨機試驗?凡是對現(xiàn)象或為此而進行的實驗,都稱之為試驗。如果試驗具有下述特點:(1)試驗可以在相同條件下重復(fù)進行;(2)每次試驗的所有可能結(jié)果都是明確可知的,并且不止一
2024-08-02 05:55
【摘要】?某商場要根據(jù)天氣預(yù)報來決定今年國慶節(jié)是在商場內(nèi)還是商場外開展促銷活動,統(tǒng)計資料表明,每年國慶節(jié)商場內(nèi)的促銷活動可獲得經(jīng)濟效益2萬元,商場外的促銷活動如果不遇到有雨天氣可獲得經(jīng)濟效益10萬元,如果促銷遇到有雨天氣則帶來經(jīng)濟損失4萬元。9月30日氣象臺預(yù)報國慶節(jié)當(dāng)?shù)赜杏甑母怕适?0%,商場應(yīng)該選擇哪種促銷方式?,其中某一次射擊中,可能
2024-08-29 01:21
【摘要】某商場為滿足市場需求要將單價分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售,其中混合糖果中每一顆糖果的質(zhì)量都相等,如何對混合糖果定價才合理?2618+24+363?定價為可以嗎?18×1/2+24×1/3+36×1/6
2024-11-18 02:15
【摘要】§2離散型隨機變量研究一個離散型隨機變量不僅要知道它可能取值而且要知道它取每一個可能值的概率.一.概率分布:設(shè)離散型隨機變量的可能取值是有限個或可數(shù)個值,設(shè)的可能取值: 為了完全描述隨機變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應(yīng)的既率成下表
2024-09-05 11:53
【摘要】1§離散型隨機變量§隨機變量的概念§超幾何分布·二項分布·泊松分布?2,1)()(???ixpxXPii1.“0-1”分布(兩點分布)3.二項分布),(~pnBX)(xPnx
2024-07-30 19:19
【摘要】隨機試驗:一般地,一個試驗如果滿足下列條件:1.試驗可以在相同的情況下重復(fù)進行;2.試驗的所有可能結(jié)果是明確可知道的,并且不只一個;3.每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但在一次試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結(jié)果.這種試驗就是一個隨機試驗,簡稱試驗隨機變量:定義:如果隨機試驗的結(jié)果
2024-11-17 03:29
【摘要】導(dǎo)入新課(1)離散型隨機變量的分布列:復(fù)習(xí)回顧Xx1x2…xi…Pp1p2…pi…(2)離散型隨機變量分布列的性質(zhì):①pi≥0,i=1,2,…;②p1+p2+…+pi+…=1.對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率.但在實際
2025-05-15 22:37
2025-06-23 21:14
【摘要】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復(fù)進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-12 16:34
【摘要】1高二數(shù)學(xué)選修2-32復(fù)習(xí)引入:1、什么是隨機事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。試驗的每一個可能的結(jié)果稱為基本事件。2、什么是隨機試驗?凡是對現(xiàn)象或為此而進行的實驗,都稱之為試驗。如果試驗具有下述特點:試驗可以在相同條件下重復(fù)進行;每次試驗的所有可
2024-08-17 18:34
【摘要】由蓮山課件提供選修2-3離散型隨機變量一、選擇題1.①某機場候機室中一天的旅客數(shù)量X;②某尋呼臺一天內(nèi)收到的尋呼次數(shù)X;③某籃球下降過程中離地面的距離X;④( )A.①中的X B.②中的XC.③中的X D.④中的X[答案] C[解析]?、?,②,④中的隨機變量X可能取的值,我們都可以按一定次序一一列出,因此,它們都是離散型隨機變量;③中的X可以
2025-04-10 05:18
【摘要】Chapter2(1)離散型隨機變量的概率分布,隨機變量的分布函數(shù)教學(xué)要求:1.理解隨機變量的概念;2.理解離散型隨機變量的分布律及性質(zhì);3.掌握二項分布、泊松分布;4.會應(yīng)用概率分布計算有關(guān)事件的概率;5.理解隨機變量分布函數(shù)的概念及性質(zhì)..隨機變量一.分布離散型隨機變量的概率二
2024-12-14 11:26
【摘要】ξ可取-1,0,1(且ξ為離散型隨機變量)解:設(shè)黃球的個數(shù)為n,依題意知道綠球個數(shù)為2n,紅球個數(shù)為4n,盒中球的總數(shù)為7n。p10-1(2)并分別求這三種情況下的概率例1一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球的一半,現(xiàn)從該盒中隨機取出一個球,
2024-11-17 12:29
【摘要】離散型隨機變量的說課稿 各位評委,各位老師下午好,我的說課內(nèi)容是人教A版選修2-3第二章隨機變量及其分布第一節(jié)離散型隨機變量及其分布列第一課時,下面我就以下幾個方面完成我的說課內(nèi)容。 一.教材分析...
2024-12-04 22:44
【摘要】一、復(fù)習(xí)引入1、離散型隨機變量ξ的期望Eξ=x1p1+x2p2+…xnpn+…2、滿足線性關(guān)系的離散型隨機變量的期望E(aξ+b)=aEξ+b3、服從二項分布的離散型隨機變量的期望Eξ=np即若ξ~B(n,p),則4、服從幾何分布的隨機變量的期望若p(ξ=k)=
2024-11-19 08:47