【摘要】§2-3運(yùn)動(dòng)微分方程的求解1)確定分析對(duì)象(隔離體)2)作受力分析(施力物、超距力、接觸力),畫隔離體圖3)建立合適坐標(biāo)系,寫出方程解析式并給出初始位置、速度4)給出二階常微分方程組的數(shù)字解5)闡明結(jié)果的物理含意與實(shí)質(zhì)作用力為時(shí)間、位置、速度的函數(shù);若力只是其中某一項(xiàng)的函數(shù),則問(wèn)題可加以簡(jiǎn)化?!祭?-1〗求質(zhì)點(diǎn)m在常力作用下的運(yùn)動(dòng)。已知t=0時(shí)初位
2024-10-08 16:37
【摘要】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡(jiǎn)化;?運(yùn)動(dòng)學(xué)從幾何觀點(diǎn)研究物體的運(yùn)動(dòng),而不涉及物體所受的力;?動(dòng)力學(xué)研究物體的機(jī)械運(yùn)動(dòng)與作用力之間的關(guān)系。動(dòng)力學(xué)就是從因果關(guān)系上論述物體的機(jī)械運(yùn)動(dòng)。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運(yùn)動(dòng)學(xué)則是動(dòng)力學(xué)的特殊情況。低速、宏觀物體的機(jī)械運(yùn)動(dòng)的普遍規(guī)律。
2025-06-22 14:51
【摘要】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-30 22:55
【摘要】變質(zhì)量物體的運(yùn)動(dòng)微分方程及火箭運(yùn)動(dòng)專業(yè):物理學(xué)學(xué)號(hào):084001091001姓名:秦瑞鋒變質(zhì)量物體的運(yùn)動(dòng)微分方程及火箭運(yùn)動(dòng)秦瑞鋒(物理與電氣工程系09級(jí)物理學(xué)專業(yè),084001091001)摘要:我們已經(jīng)了解了一定質(zhì)量的系統(tǒng)的運(yùn)動(dòng)學(xué)方程和動(dòng)力學(xué)方程,但在實(shí)際問(wèn)題中,系統(tǒng)的質(zhì)量往往是變化(按一定規(guī)律減少
2025-06-02 23:51
【摘要】計(jì)算機(jī)控制技術(shù)課程講義1步驟:1、給定系統(tǒng)的輸入和必要初始條件。(輸出的響應(yīng)函數(shù)必然在某種輸入激勵(lì)條件下產(chǎn)生)2、對(duì)微分方程兩邊進(jìn)行拉氏變換,變微分運(yùn)算為代數(shù)運(yùn)算。3、在S域中解出系統(tǒng)輸出的拉氏變換表達(dá)式,應(yīng)用拉氏反變換求得其時(shí)域解。用拉氏變換求解線性微分方程計(jì)算機(jī)控制技術(shù)課程講義2例:前例3力學(xué)系統(tǒng),系統(tǒng)輸出:
2025-05-20 12:11
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-22 21:13
【摘要】例1.求微分方程的通解。解:,分離變量,兩邊積分:記,方程通解為:。:注:事實(shí)上,,積分后得:,。例2.求微分方程滿足初始條件的特解。解:分離變量:,兩邊積分:,方程的通解為:。初始條件,則,,所求特解:或例3.設(shè)()連續(xù)可微且,已知曲線、軸、軸上過(guò)原點(diǎn)及點(diǎn)的兩條垂線所圍成的圖形的面積值與曲線的一段弧長(zhǎng)相等,求。
2024-10-08 16:01
【摘要】微分方程的經(jīng)濟(jì)應(yīng)用,如果要使該商品的銷售收入在價(jià)格變化的情況下保持不變,則銷售量對(duì)于價(jià)格的函數(shù)關(guān)系滿足什么樣的微分方程?在這種情況下,該商品的需求量相對(duì)價(jià)格的彈性是多少?解 由題意得銷售收入(常數(shù)),在上式兩端對(duì)求導(dǎo),得到所滿足的微分方程.即且,需求量(1)求商品對(duì)價(jià)格的需求函數(shù);(2)當(dāng)時(shí),需求是否趨于穩(wěn)定.
2024-10-08 15:08
2024-09-05 06:16
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-05-05 06:42
【摘要】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴(kuò)床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級(jí)血悟捎許含鵲誤剛懸馱滓晦元砌測(cè)顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹(jǐn)侵娜牟你醋顴頭柑寬盟澈席雅風(fēng)匙鼻全驗(yàn)腥輩洪僻統(tǒng)疾訃結(jié)吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
2025-03-31 01:12
【摘要】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點(diǎn)M(x,y)處切線的斜率等于該點(diǎn)橫坐標(biāo)4倍,且過(guò)(-1,3)點(diǎn),求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點(diǎn)M(x,y)處切線的斜率為根據(jù)題意有這是一個(gè)含有一階導(dǎo)數(shù)的模型引例2(運(yùn)動(dòng)方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運(yùn)動(dòng)只受重力的影響。試確定該物體速度隨時(shí)間的變化規(guī)律
2024-10-08 15:15
【摘要】第九章微分方程一、教學(xué)目標(biāo)及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會(huì)解齊次方程。(3)會(huì)用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。(6)會(huì)求自由項(xiàng)多項(xiàng)式、指數(shù)函數(shù)、
2025-06-30 15:07
【摘要】一單項(xiàng)選擇題(每小題2分,共40分)1.下列四個(gè)微分方程中,為三階方程的有()個(gè).(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個(gè)一般的n階微分方程=0的一個(gè)特解,通常應(yīng)給出的初始條件是().A.當(dāng)時(shí),B.當(dāng)時(shí),C.當(dāng)時(shí),D.當(dāng)時(shí),3.微分方程的一個(gè)解是().
【摘要】本科畢業(yè)設(shè)計(jì)(論文)題目:高階線性微分方程與線性微分方程組之間關(guān)系的研究院(系)專業(yè)班級(jí)姓名學(xué)號(hào)
2024-12-12 00:42