【摘要】4二次函數(shù)的應(yīng)用第1課時(shí)【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計(jì)算公式,并且用函數(shù)表示這個(gè)面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時(shí)自變量的值.【自我診斷】
2025-06-20 06:48
【摘要】4二次函數(shù)的應(yīng)用第2課時(shí)T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價(jià)值.,并運(yùn)用二次函數(shù)的知識求出實(shí)際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點(diǎn)坐標(biāo)為(h,k)①當(dāng)a0時(shí),y有最小值k②當(dāng)a0時(shí),y有最大值
2025-06-26 22:57
【摘要】4二次函數(shù)的應(yīng)用第2課時(shí)【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價(jià)或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤,即___________.(5)根
2025-06-18 13:43
【摘要】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關(guān)系.函數(shù)變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子.
2025-06-21 02:59
2025-06-21 02:53
【摘要】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點(diǎn)1利用二次函數(shù)求圖形面積的最值20cm,則這個(gè)直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個(gè)窗戶的最大透光面積是(C)A.6425m2
2025-06-24 00:33
【摘要】第二章二次函數(shù)1二次函數(shù)【基礎(chǔ)梳理】二次函數(shù)的定義及相關(guān)概念若兩個(gè)變量x,y之間的對應(yīng)關(guān)系可以表示成__________(a,b,c為常數(shù),a≠0)的形式,則稱y是x的二次函數(shù).其中__是二次項(xiàng)系數(shù),__是一次項(xiàng)系數(shù),__是常數(shù)項(xiàng).y=ax2+bx+cabc【自我診斷】1.(1)y=
2025-06-27 02:27
2025-06-18 12:36
【摘要】1二次函數(shù)第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)1二次函數(shù)課堂達(dá)標(biāo)一、選擇題1二次函數(shù)1.2022·浦東新區(qū)一模下列函數(shù)中,是二次函數(shù)的是()A.y=-4x+5B.y=x(2x-3)C
2025-06-24 03:06
2025-06-23 21:35
【摘要】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點(diǎn)最大利潤問題,在銷售過程中,發(fā)現(xiàn)一周利潤y(元)與每件銷售價(jià)x(元)之間的關(guān)系滿足y=-2(x-20)2+1558,由于某種原因,銷售價(jià)需滿足15≤x≤22,那么一周可獲得的最大利潤是(D),100件按批發(fā)價(jià)每件30元,每多批發(fā)10件
2025-06-24 00:31
【摘要】二次函數(shù)第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)習(xí)目標(biāo).(重點(diǎn))..(難點(diǎn))導(dǎo)入新課情景引入里約奧運(yùn)會上,哪位奧運(yùn)健兒給你留下了深刻的印象?你能猜出下面表情包是誰嗎?你們是根據(jù)哪些特征猜出的呢?下面來看傅園慧在里約奧運(yùn)會賽后的采訪視頻,注意前方高能表情包.
2025-06-25 06:55