【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第3課時【基礎梳理】y=a(x-h)2的性質(zhì)其對稱軸是x=__,頂點坐標是______.h(h,0)y=a(x-h)2與y=ax2的關系它們_____相同,只是_____不同.當h0時,拋物線y=ax2向___平移h個單位,得到y(tǒng)=a(x-h)2;當h0時,拋
2025-06-12 12:32
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第2課時的圖象,并能夠比較它們2yax?2(0)yaxca???ac和與對二次函數(shù)圖象的影響.的圖象的異同,理解2yax?2(0)???yaxca和圖象的開口方向、對稱軸、頂點坐標.函數(shù)y=x2y=-x
2025-06-15 02:53
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第3課時oyxy=ax2+bx+c的圖象的作法和性質(zhì)的過程..y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關系.理解a,h和k對二次函數(shù)圖象的影響.y=a(x-h)2+k的圖象的開口方向、對稱軸和頂點坐標.
2025-06-15 03:00
【總結(jié)】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考??嫉念}型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
【總結(jié)】北師大版九年級下冊數(shù)學20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標為(-2a244acba?①當a0時,y有最小值=②當a0時,y有最大值=244acba?二次函數(shù)的最值求法情境導入
2025-06-17 13:01
【總結(jié)】北師大版九年級下冊數(shù)學情境導入某超市有一種商品,進價為2元,據(jù)市場調(diào)查,銷售單價是13元時,平均每天銷售量是50件,而銷售價每降低1元,平均每天就可以多售出10件.若設降價后售價為x元,每天利潤為y元,則y與x之間的函數(shù)關系是怎樣的?本節(jié)目標T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學模型
2025-06-12 01:19
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點1二次函數(shù)y=ax2(a≠0)的圖象與性質(zhì)1.關于y=13x2,y=x2,y=3x2的圖象,下列說法中不正確的是(C)A.頂點相同B.對稱軸相同C.圖象形狀相同D.最低點相同(-1,y1
2025-06-18 00:26
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點1二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸及頂點坐標y=-3x2-6x+5的圖象的頂點坐標是(A)A.(-1,8)B.(1,8)C.(-1,2)D.(1,-4),函數(shù)h=(t的單位:s,h的單位:m)可以描述他跳躍時重心高
2025-06-18 00:31
【總結(jié)】第二章二次函數(shù)導入新課講授新課當堂練習課堂小結(jié)第2課時商品利潤最大問題二次函數(shù)的應用學習目標利潤問題.(重點)值范圍.(難點)導入新課情境引入短片中,賣家使出渾身解數(shù)來賺錢.商品買賣過程中,作為商家利潤最大化是永恒的追求.如果你是商家
2025-06-14 03:00
2025-06-14 02:05
【總結(jié)】二次函數(shù)的應用第二章二次函數(shù)導入新課講授新課當堂練習課堂小結(jié)第1課時圖形面積的最大值九年級數(shù)學下(BS)教學課件學習目標.(難點)..(重點)導入新課復習引入寫出下列拋物線的開口方向、對稱軸和頂點坐標.
2025-06-18 00:40
【總結(jié)】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
【總結(jié)】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
【總結(jié)】4二次函數(shù)的應用第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第2課時最大利潤問題課堂達標一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
2025-06-15 02:54