【總結(jié)】第二章二次函數(shù)1二次函數(shù)【基礎(chǔ)梳理】二次函數(shù)的定義及相關(guān)概念若兩個變量x,y之間的對應(yīng)關(guān)系可以表示成__________(a,b,c為常數(shù),a≠0)的形式,則稱y是x的二次函數(shù).其中__是二次項系數(shù),__是一次項系數(shù),__是常數(shù)項.y=ax2+bx+cabc【自我診斷】1.(1)y=
2025-06-21 02:27
【總結(jié)】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關(guān)系.函數(shù)變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.
2025-06-15 02:59
2025-06-15 02:53
2025-06-12 12:36
【總結(jié)】1二次函數(shù)第二章二次函數(shù)課堂達標(biāo)素養(yǎng)提升第二章二次函數(shù)1二次函數(shù)課堂達標(biāo)一、選擇題1二次函數(shù)1.2022·浦東新區(qū)一模下列函數(shù)中,是二次函數(shù)的是()A.y=-4x+5B.y=x(2x-3)C
2025-06-18 03:06
2025-06-17 21:35
【總結(jié)】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考??嫉念}型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第2課時的圖象,并能夠比較它們2yax?2(0)yaxca???ac和與對二次函數(shù)圖象的影響.的圖象的異同,理解2yax?2(0)???yaxca和圖象的開口方向、對稱軸、頂點坐標(biāo).函數(shù)y=x2y=-x
2025-06-15 03:00
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點1二次函數(shù)y=a(x-h)2(a≠0)的圖象與性質(zhì)y=-2(x-3)2的頂點坐標(biāo)和對稱軸分別是(B)A.(-3,0),直線x=-3B.(3,0),直線x=3C.(0,-3),直線x=-3D.(0,3),直線x=-3
2025-06-18 00:39
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第2課時【基礎(chǔ)梳理】y=ax2(a為常數(shù),a≠0)的圖象與性質(zhì)函數(shù)y=ax2(a0)y=ax2(a0)y=ax2(a0)頂點坐標(biāo)_________
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第4課時些數(shù)學(xué)問題.y=ax2+bx+c的圖象特征,會用配方法求其對稱軸、頂點坐標(biāo)公式.、對稱軸和頂點坐標(biāo).(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?【解析】1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(biāo)(
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第1課時y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.y=x2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=x2的性質(zhì).y=-x2的圖象,并能比較它與y=x2的圖象的異同,初步建立二次函數(shù)表達式與圖象間的聯(lián)系.一般地,形如y=ax2+bx+c(a,b,c是常數(shù),
2025-06-12 12:32