【摘要】精品資源第19課三角形與全等三角形知識點:三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關系,三角形的內角和,三角形的分類,全等形,全等三角形及其性質,三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質,逆命題和逆定理的概念,理解三角形,三角形的頂點,邊,內角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-22 12:49
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂
2024-08-06 01:22
【摘要】善于構造活用性質安徽張雷幾何問題中,若出現(xiàn)角平分線這一條件時,可聯(lián)想角平分線的特性,靈活利用角平分線的特性來解決問題.“距離”,用性質很多時候,題意中只給角平分線這個條件,圖上并沒有出現(xiàn)“距離”,而角平分線性質的運用又離不開這個“距離”,所以同學們應大膽地讓“距離”現(xiàn)身(過角平分線上的一點向角的兩邊作垂線段)例:三角形的三條角平分線交于一點,你知道這是為
2025-07-02 20:39
【摘要】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2024-08-14 14:23
【摘要】構造等腰三角形解題的輔助線做法呂海艷等腰三角形是一種特殊的三角形,常與全等三角形的相關知識結合在一起考查。在許多幾何問題中,通常需要構造等腰三角形才能使問題獲解。那么如何構造等腰三角形呢?一般有以下四種方法:(1)依據平行線構造等腰三角形;(2)依據倍角關系構造等腰三角形;(3)依據角平分線+垂線構造等腰三角形;(4)依據120°角或60°角,常補形構
2025-03-31 04:37
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-17 22:05
【摘要】4cm2cm拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm2428424拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm24144124cm1cm拼成的平行四邊形三角形
2024-08-07 23:38
【摘要】相似三角形與全等三角形的綜合復習友情提示:請根據課本相關內容,快速解決下列問題,8分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-12-02 14:14
【摘要】全等三角形綜合復習切記:“有三個角對應相等”和“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點,點在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-29 18:30
【摘要】人教新課標四年級數(shù)學下冊本節(jié)課我們主要來學習三角形的分類,同學們要知道分類的方法以及各類三角形的特點。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個角都是銳角的三角形。直角直角三角形:有一個角是直角的三角形。鈍角鈍角三角形:有一個角是鈍角的三角形?!傲鲃蛹t旗”有
2024-11-30 04:21
【摘要】......全等三角形綜合復習切記:“有三個角對應相等”和“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-29 03:58
【摘要】三角形三邊關系、三角形內角與定理三角形三邊關系、三角形內角和定理 定理:三角形兩邊的和大于第三邊?! ⊥普摚喝切蝺蛇叺牟钚∮诘谌叀! ”磉_式:△ABC中,設a>b>c 則b-c<a<b+c a-c<b<a+c a-b<c<a+b給出三條線段的長度,判斷它們能否構成三角形?! 》椒ǎㄔOa、b、c
2024-08-07 00:01
【摘要】專題課堂(六)相似三角形思想方法第23章圖形的相似一、數(shù)形結合思想【例1】如圖,在平面直角坐標系中,A(1,0),B(3,0),C(0,3),D(2,-1),P(2,2).(1)△ABC與△ADP相似嗎?請說明理由;(2)在圖中標出點D關于y軸的對稱點D′,連結AD′,CD′,判斷△A
2024-11-17 01:48
【摘要】作業(yè)布置評價小結鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2024-11-17 03:54
2024-08-29 01:10