【摘要】110-3可降階的高階微分方程2復(fù)習(xí)1.可分離變量方程分離變量法步驟:;-隱式通解.d()dyyxx??形如的微分方程.解法:,xyu?作變量代換,yxu?即dd.yuuxxx??則3.一階線性非齊次微分方程(1)一般式(2)通解公式
2025-05-20 17:48
【摘要】1第三節(jié)2解解法:兩邊積分n次即可.一、)()(xfyn?型例1.cose2的通解求xyx?????12sine21Cxyx?????212cose41CxCxyx?????3221221sine81CxCxCxyx
2024-12-14 01:04
【摘要】機(jī)動目錄上頁下頁返回結(jié)束高階線性微分方程解的結(jié)構(gòu)第七節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第十二章n階線性微分方程的一般形式為方程的共性為二階線性微分方程.例1例2,)()()(xfyxqyxpy?
2025-05-18 16:10
【摘要】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來求解??山惦A的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)相當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
【摘要】第十章微分方程第六節(jié)可降階的高階微分方程一、型的微分方程二、型的微分方程三、型的微分方程一、)()(xfyn?令,)1(??nyz因此1d)(Cxxfz???即
2025-05-22 21:59
【摘要】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來求解??山惦A的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)腥當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
【摘要】上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院1第4章微分方程與差分方程上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院2在科學(xué)技術(shù)和經(jīng)濟(jì)管理等許多實(shí)際問題中,系統(tǒng)中的變量間往往可以表示成一個(gè)(組)微分方程或差分方程,它們是兩類不同的方程,前者處理的量的離散變量,間隔時(shí)間周期作為統(tǒng)計(jì)的.動態(tài)
2025-05-22 06:04
【摘要】可降階的高階微分方程1小結(jié)思考題作業(yè))()(xfyn?型的方程),(yxfy????型的方程),(yyfy????型的方程可降階的高階微分方程第5章微分方程應(yīng)用可降階的高階微分方程2)()(xfyn?一、
2025-05-05 05:40
【摘要】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-10-25 17:11
【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-05-01 03:56
【摘要】可降階高階微分方程機(jī)動目錄上頁下頁返回結(jié)束一、型的微分方程二、型的微分方程三、型的微分方程可降階微分方程的解法——降階法逐次積分令,)(xpy??
【摘要】2021/6/17常微分方程§微分方程的降階和冪級數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-19 05:30
【摘要】第八節(jié)高階線性微分方程一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體便離開平衡位置,并在平衡位置附近作上下振動.試確定物體的振動規(guī)律)(txx?.解受力分析;.1cxf??恢復(fù)力;.2dtdxR???阻力xxo,maF??,22dtdxcx
2024-10-23 00:48
【摘要】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(下)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第七章常微分方程高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第四節(jié)高階線性微分方程河海大學(xué)理學(xué)院《高等數(shù)學(xué)》一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體
2025-05-13 12:10
【摘要】§8.高階導(dǎo)數(shù)與高階微分YunnanUniversity1一、高階導(dǎo)數(shù)及其運(yùn)算法則,其速度物體運(yùn)動規(guī)律)(tss?.lim)(0tstsvt???????一階導(dǎo)數(shù)).())(()(lim)(0tststvtvtat?????????????時(shí)間內(nèi)在t?于是,212gts?自由落
2025-05-22 22:24