【摘要】數(shù)列的通項公式及求和通項的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2025-07-31 15:41
【摘要】數(shù)列的通項公式與求和練習1練習2練習3練習4練習5練習6練習7練習8等比數(shù)列的前項和Sn=2n-1,則練習9
2025-06-25 23:52
【摘要】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d數(shù)列{an}的后一項與前一項的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項公式an=a1+(n-1)d
2025-04-23 01:43
【摘要】......求數(shù)列通項公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項公式。 解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差
2025-03-31 02:53
【摘要】海豚教育個性化簡案學生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學目標1.復習等差數(shù)列和等比數(shù)列的基本定義;2.學會通過作差法
2025-08-10 10:15
【摘要】......數(shù)列的通項公式教學目標:使學生掌握求數(shù)列通項公式的常用方法.教學重點:運用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式.教學難點:構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式的方法.教學時數(shù):2課
2025-04-23 04:59
【摘要】數(shù)列通項公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習若數(shù)列的遞推公式為,則求這個數(shù)列的通項公式?! 。ǎ┒?、公式法已知數(shù)列的前項和與的關(guān)系,求數(shù)列的通項可用公式求解.例2.①
2025-07-02 05:29
【摘要】求通項公式專題一、利用與關(guān)系求1-1已知數(shù)列的前項和,求通項公式例1 已知數(shù)列的前項和,求數(shù)列的通項公式(1).(2)變式訓練1 已知數(shù)列的前項和,求數(shù)列的通項公式(1).(2)1-2已知與的關(guān)系式,求例2 已知數(shù)列的前項和,求的通項公式..變式訓練2已知數(shù)列的前項和滿足,求的通項公式..變式訓練3
【摘要】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是??嫉囊粋€知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2025-07-02 05:23
【摘要】等比數(shù)列的通項公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項和_______.【例2】等差數(shù)列的前項和為,且,則.【例3】設(shè)等比數(shù)列的前項和為,若,則()A. B. C. D.【例4】設(shè)是公比為的等比數(shù)列,,令,若
2025-07-31 06:33
【摘要】數(shù)列通項公式的求法集錦非等比、等差數(shù)列的通項公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對數(shù)列求通項公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式。解:∵這n-1個等式累加得:=
2025-07-02 05:28
【摘要】高考數(shù)列通項公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項公式的方法……………………………………………………………12求通項公式方法選擇策略…………………………………………………123求通項公式注意的問題………………………………………………………13參考文獻…………………………………………………………………
2025-04-23 13:06
【摘要】數(shù)列通項及求和一.選擇題:{an}滿足a1=1,且,且n∈N),則數(shù)列{an}的通項公式為(??)A.??B.C.a(chǎn)n=n+2???D.a(chǎn)n=(n+2)·3n,,則數(shù)列的通項公式是(?)A.????
2025-07-02 05:42
【摘要】數(shù)列求和方法等差數(shù)列、等比數(shù)列的求和是高考??嫉膬?nèi)容之一,一般數(shù)列求和的基本思想是將其通項變形,化歸為等差數(shù)列或等比數(shù)列的求和問題,或利用代數(shù)式的對稱性,采用消元等方法來求和.下面我們結(jié)合具體實例來研究求和的方法.一、直接求和法(或公式法)將數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,直接運用等差或等比數(shù)列的前n項和公式求得.例1求.解:原式. 由等差數(shù)列求和公式,得原式.二、
2025-07-29 16:03
【摘要】......數(shù)列通項公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式
2025-08-09 23:50