【摘要】§2離散型隨機(jī)變量研究一個離散型隨機(jī)變量不僅要知道它可能取值而且要知道它取每一個可能值的概率.一.概率分布:設(shè)離散型隨機(jī)變量的可能取值是有限個或可數(shù)個值,設(shè)的可能取值: 為了完全描述隨機(jī)變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應(yīng)的既率成下表
2024-09-05 11:53
【摘要】復(fù)習(xí)引入1、什么是隨機(jī)事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件。試驗的每一個可能的結(jié)果稱為基本事件。2、什么是隨機(jī)試驗?凡是對現(xiàn)象或為此而進(jìn)行的實驗,都稱之為試驗。如果試驗具有下述特點:(1)試驗可以在相同條件下重復(fù)進(jìn)行;(2)每次試驗的所有可能結(jié)果都是明確可知的,并且不止一
2025-07-26 05:55
【摘要】一、復(fù)習(xí)引入1、離散型隨機(jī)變量ξ的期望Eξ=x1p1+x2p2+…xnpn+…2、滿足線性關(guān)系的離散型隨機(jī)變量的期望E(aξ+b)=aEξ+b3、服從二項分布的離散型隨機(jī)變量的期望Eξ=np即若ξ~B(n,p),則4、服從幾何分布的隨機(jī)變量的期望若p(ξ=k)=
2024-11-19 08:47
【摘要】?某商場要根據(jù)天氣預(yù)報來決定今年國慶節(jié)是在商場內(nèi)還是商場外開展促銷活動,統(tǒng)計資料表明,每年國慶節(jié)商場內(nèi)的促銷活動可獲得經(jīng)濟(jì)效益2萬元,商場外的促銷活動如果不遇到有雨天氣可獲得經(jīng)濟(jì)效益10萬元,如果促銷遇到有雨天氣則帶來經(jīng)濟(jì)損失4萬元。9月30日氣象臺預(yù)報國慶節(jié)當(dāng)?shù)赜杏甑母怕适?0%,商場應(yīng)該選擇哪種促銷方式?,其中某一次射擊中,可能
2024-08-29 01:21
【摘要】離散型隨機(jī)變量的方差一般地,若離散型隨機(jī)變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學(xué)期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機(jī)變量的均值的定義
2024-11-26 08:45
【摘要】離散型隨機(jī)變量的說課稿 各位評委,各位老師下午好,我的說課內(nèi)容是人教A版選修2-3第二章隨機(jī)變量及其分布第一節(jié)離散型隨機(jī)變量及其分布列第一課時,下面我就以下幾個方面完成我的說課內(nèi)容。 一.教材分析...
2024-12-04 22:44
2025-06-23 21:14
【摘要】第九節(jié)離散型隨機(jī)變量的均值與方差、正態(tài)分布高考成功方案第一步高考成功方案第二步高考成功方案第三步高考成功方案第四步第十章計數(shù)原理、概率、隨機(jī)變量及分布列返回考綱點擊1.理解取有限個值的離散型隨機(jī)變量均值、方
2025-05-06 03:54
【摘要】導(dǎo)入新課(1)離散型隨機(jī)變量的分布列:復(fù)習(xí)回顧Xx1x2…xi…Pp1p2…pi…(2)離散型隨機(jī)變量分布列的性質(zhì):①pi≥0,i=1,2,…;②p1+p2+…+pi+…=1.對于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率.但在實際
2025-05-15 22:37
【摘要】某商場為滿足市場需求要將單價分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售,其中混合糖果中每一顆糖果的質(zhì)量都相等,如何對混合糖果定價才合理?2618+24+363?定價為可以嗎?18×1/2+24×1/3+36×1/6
2024-11-18 02:15
【摘要】量的均值高二數(shù)學(xué)選修2-3一、復(fù)習(xí)回顧1、離散型隨機(jī)變量的分布列XP1xix2x······1p2pip······2、離散型隨機(jī)變量分布列的性質(zhì):(1)pi≥0,i=1,2,
2024-12-08 14:42
【摘要】1北京市中小學(xué)“京教杯”青年教師教學(xué)設(shè)計大賽教學(xué)設(shè)計參與人員姓名單位聯(lián)系方式設(shè)計者徐丹丹北京市第八中學(xué)大興分校18601027850實施者徐丹丹北京市第八中學(xué)大興分校18601027850指導(dǎo)者楊林軍北京市大興區(qū)教師進(jìn)修學(xué)校13241934602程
2024-12-07 09:55
【摘要】第九節(jié)離散型隨機(jī)變量的均值與方差、正態(tài)分布抓基礎(chǔ)明考向提能力教你一招我來演練第十章計數(shù)原理、概率、隨機(jī)變量及其分布返回[備考方向要明了]考什么、方差的概念,會
2025-05-21 06:45
【摘要】例1:某保險公司新開設(shè)了一項保險業(yè)務(wù),若在一年內(nèi)事件E發(fā)生,該公司要賠償a元.設(shè)在一年內(nèi)E發(fā)生的概率為p,為使公司收益的期望值等于a的10%,公司應(yīng)要求顧客交多少保險金?例2:將一枚硬幣拋擲20次,求正面次數(shù)與反面次數(shù)之差?的概率分布,并求出?的期望E?與方差D?.例3(07全國高考)某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客
2024-10-22 20:03
【摘要】離散型隨機(jī)變量的均值1、什么叫n次獨立重復(fù)試驗?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構(gòu)成,且每次試驗互相獨立完成,每次試驗的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)