【摘要】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第6章解線性方程組的迭代法直接法得到的解是理論上準(zhǔn)確的,但是我們可以看得出,它們的計(jì)算量都是n3數(shù)量級(jí),存儲(chǔ)量為n2量級(jí),這在n比較小的時(shí)候還比較合適(n400
2025-07-26 06:24
【摘要】第四章解線性方程組的迭代法/*IterativeTechniquesforSolvingLinearSystems*/求解bxA???思路與解f(x)=0的不動(dòng)點(diǎn)迭代相似……,將等價(jià)bxA???改寫為形式,建立迭代
2025-07-29 10:21
【摘要】第6章解線性方程組的迭代法直接方法比較適用于中小型方程組。對(duì)高階方程組,即使系數(shù)矩陣是稀疏的,但在運(yùn)算中很難保持稀疏性,因而有存儲(chǔ)量大,程序復(fù)雜等不足。迭代法則能保持矩陣的稀疏性,具有計(jì)算簡(jiǎn)單,編制程序容易的優(yōu)點(diǎn),并在許多情況下收斂較快。故能有效地解一些高階方程組。1迭代法概述迭代法的基本思想是構(gòu)造一串收斂到解的序列,即建立一種從已有近似解計(jì)算新的近似解的規(guī)則。由不同的計(jì)
2024-09-05 01:55
【摘要】1第三章解線性方程組的迭代法?Jacobi迭代法?Gauss-Seidel迭代法?迭代法的收斂條件(充要條件,充分條件)bAx?求?迭代法概述2?迭代法概述gMxxbAx????等價(jià)線性方程組取初始向量x(0)?Rn,構(gòu)造如下單步定常線性迭代公式),2,1,0(
2024-10-22 21:26
【摘要】第六章線性方程組的解法§引言與預(yù)備知識(shí)§高斯消去法§高斯主元素消去法§矩陣的三角分解法§誤差分析§線性方程組的迭代解法§引言與預(yù)備知識(shí)(返回)?線性方程組的數(shù)值解法?向量和矩陣(返回)?矩陣的基本運(yùn)算
2025-02-27 12:44
【摘要】非線性方程(組)求解?非線性方程(組)數(shù)值求解基本原理?多項(xiàng)式求根函數(shù)-roots?非線性方程求解函數(shù)-fzero?非線性方程組求解函數(shù)-fsolve復(fù)習(xí)與練習(xí)按以下要求編寫一個(gè)函數(shù)計(jì)算的值,其中x0時(shí),y=;x0時(shí),y=2/x
2024-10-19 16:48
【摘要】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類?低階稠密矩陣(例如,階數(shù)不超過150)(一般用直接法來求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來求解)線性方程組的數(shù)值解法分類?直接法經(jīng)過有限步算術(shù)運(yùn)算,可求得方程組精確解的方法。
2025-07-29 10:31
【摘要】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2025-07-30 07:09
【摘要】數(shù)值分析實(shí)驗(yàn)報(bào)告三求解線性方程組的迭代方法和插值法(2學(xué)時(shí))班級(jí)專業(yè)信科3姓名梁嘉城學(xué)號(hào)201130760314日期一實(shí)驗(yàn)?zāi)康?.掌握求解線性方程組的簡(jiǎn)單迭代法;2.掌握求解線性方程組的賽德爾迭代法。3.掌握不等距節(jié)點(diǎn)下的牛頓插值公式以及拉格朗日插值公式。二實(shí)驗(yàn)內(nèi)容1.使用簡(jiǎn)單迭代法求解方程組(精度要求為):2.使
2024-08-30 11:15
【摘要】一、消元法解線性方程組二、矩陣的初等變換三、小結(jié)思考題第三章矩陣的初等變換與線性方程組第一節(jié)矩陣的初等變換機(jī)動(dòng)目錄上頁下頁返回結(jié)束本章先討論矩陣的初等變換,建立矩陣的秩的概念,并提出求秩的有效方法.再利用矩陣的秩反過來研究齊次線性方程組有非零解的充
2024-08-14 17:41
【摘要】§高斯消元法解線性方程組一、線性方程組的矩陣表示二、用高斯消元法求解線性方程組三、小結(jié)在第1章的,我們學(xué)習(xí)過用Gramer’法則解形如)1(22112222212111212111???????????????????nnnnnnnnnnbxaxaxabxaxaxa
2024-08-18 18:07
【摘要】1第三章2線性方程組是線性代數(shù)中最重要最基本的內(nèi)容之一,是解決很多實(shí)際問題的的有力工具,在科學(xué)技術(shù)和經(jīng)濟(jì)管理的許多領(lǐng)域(如物理、化學(xué)、網(wǎng)絡(luò)理論、最優(yōu)化方法和投入產(chǎn)出模型等)中都有廣泛應(yīng)用.第一章介紹的克萊姆法則只適用于求解方程個(gè)數(shù)與未知量個(gè)數(shù)相同,且系數(shù)行列式非零的線性方程組.本章研究一般線性
2025-05-18 14:25
【摘要】2022/8/181解線性方程組的直接方法2022/8/182第五章解線性方程組的直接方法§引言?解線性方程組的兩類方法:直接法:經(jīng)過有限次運(yùn)算后可求得方程組精確解的方法(不計(jì)舍入誤差)迭代法:從解的某個(gè)近似值出發(fā),通過構(gòu)造一個(gè)無窮序列去逼近精確解的方法。(一般有限步內(nèi)得不到精確解)20
2025-07-27 10:44
【摘要】1第六節(jié)線性方程組解的結(jié)構(gòu)一、齊次線性方程組解的結(jié)構(gòu)二、非齊次線性方程組解的結(jié)構(gòu)2?2020,HenanPolytechnicUniversity2§6線性方程組解的結(jié)構(gòu)第三章線性方程組所謂解的結(jié)構(gòu)就是解與解之間的關(guān)系。下面我們將證明,雖然在這時(shí)有無窮多解但是全部的解都
2024-10-25 12:07
【摘要】泰山學(xué)院信息科學(xué)技術(shù)系DepartmentofInformationScienceandTechnology,TaishanCollege第三章解線性方程組的直接法實(shí)際中,存在大量的解線性方程組的問題。很多數(shù)值方法到最后也會(huì)涉及到線性方程組的求解問題:如樣條插值的M和m關(guān)系式,曲線擬合的法方程,方程組的Newton迭代
2025-07-29 09:40