【摘要】第四章解線性方程組的迭代法/*IterativeTechniquesforSolvingLinearSystems*/求解bxA???思路與解f(x)=0的不動點(diǎn)迭代相似……,將等價(jià)bxA???改寫為形式,建立迭代
2024-08-05 10:21
【摘要】第六章解線性方程組的迭代法引言基本迭代法迭代法的收斂性分塊迭代法引言本章介紹求解線性方程組的迭代求解方法,其中,。假設(shè)非奇異,則方程組有唯一解。本章介紹迭代法的一些基本理論及Jacobi迭代法,Gaus
2024-08-14 13:25
【摘要】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類?低階稠密矩陣(例如,階數(shù)不超過150)(一般用直接法來求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來求解)線性方程組的數(shù)值解法分類?直接法經(jīng)過有限步算術(shù)運(yùn)算,可求得方程組精確解的方法。
2024-08-05 10:31
【摘要】1第三章解線性方程組的迭代法?Jacobi迭代法?Gauss-Seidel迭代法?迭代法的收斂條件(充要條件,充分條件)bAx?求?迭代法概述2?迭代法概述gMxxbAx????等價(jià)線性方程組取初始向量x(0)?Rn,構(gòu)造如下單步定常線性迭代公式),2,1,0(
2024-10-22 21:26
【摘要】1第6章解線性方程組的迭代法2迭代法的基本概念Jacobi迭代法與Gauss-Seidel迭代法超松弛迭代法共軛梯度法3迭代法的基本概念考慮線性方程組,bAx?()其中為非奇異矩陣,當(dāng)為低階稠密矩陣時(shí),第5章所討論的選主元消去法是有效
2025-01-25 16:41
【摘要】線性方程組的求解中國青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡單的MATHMATICA使用知識。?課件使用學(xué)時(shí):4學(xué)時(shí)?面向?qū)ο螅何目平?jīng)濟(jì)類本科生?目的:掌握線性方程組的知識點(diǎn)學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-06 12:10
【摘要】1分別用矩陣求逆、矩陣除法以及矩陣分解求線性方程的解。2下面是一個線性病態(tài)方程組:(1)求方程的解。(2)將方程右邊向量元素b3改為[::],再求解,并比較b3的變化和解的相對變化。(3)計(jì)算系數(shù)矩陣A和條件數(shù)并分析結(jié)論。解:1-1A=[2,3,5;3,7,4;1,-7,1];B=[10,3,5]X=A\B.'
2025-03-30 07:03
【摘要】一、消元法解線性方程組二、矩陣的初等變換三、小結(jié)思考題第三章矩陣的初等變換與線性方程組第一節(jié)矩陣的初等變換機(jī)動目錄上頁下頁返回結(jié)束本章先討論矩陣的初等變換,建立矩陣的秩的概念,并提出求秩的有效方法.再利用矩陣的秩反過來研究齊次線性方程組有非零解的充
2024-08-14 17:41
【摘要】沈陽航空航天大學(xué)理學(xué)院本科學(xué)位論文開題報(bào)告論文題目:求解稀疏線性方程組的迭代算法專業(yè):信息與計(jì)算科學(xué)學(xué)生姓名:指導(dǎo)教師:報(bào)告時(shí)間:2015年3月18日指導(dǎo)教師意見:
2025-01-27 16:54
【摘要】湖北民族學(xué)院理學(xué)院2016屆本科畢業(yè)論文(設(shè)計(jì))線性方程組的求解方法及應(yīng)用學(xué)生姓名:付世輝
2025-04-14 02:05
【摘要】LU分解法求解線性方程組L為下三角,U為單位上三角???????????????????????????????????????????nnnnnnnnnnnnuuuuu
2024-08-08 08:09
【摘要】§高斯消元法解線性方程組一、線性方程組的矩陣表示二、用高斯消元法求解線性方程組三、小結(jié)在第1章的,我們學(xué)習(xí)過用Gramer’法則解形如)1(22112222212111212111???????????????????nnnnnnnnnnbxaxaxabxaxaxa
2024-08-18 18:07
【摘要】§非線性方程組的迭代解法§預(yù)備知識一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2024-08-06 07:09
【摘要】(2)設(shè)對稱正定陣系數(shù)陣線方程組2、數(shù)學(xué)原理1、平方根法解n階線性方程組Ax=b的choleskly方法也叫做平方根法,這里對系數(shù)矩陣A是有要求的,需要A是對稱正定矩陣,根據(jù)數(shù)值分析的相關(guān)理論,如果A對稱正定,那么系數(shù)矩陣就可以被分解為的形式,其中L是下三角矩陣,將其代入Ax=b中,可得:進(jìn)行如下分解:那么就可先計(jì)算y,再計(jì)算x,由于L是下三角矩陣,是上三角
2025-03-30 05:00
【摘要】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2024-08-03 00:10