【正文】
elements , which are got minimum value of grade deviation, meanwhile, require any one of (n1) elements is not given by the other (n2) elements。 Aggregation。 2 3基于圖2,選擇相應(yīng)的元素從判斷矩陣A1A5是:按照加法原理得: * * 可得:因此,建立初始矩陣如下: 基于反射的原理,行和列是成正比的,丟失的元素被填滿,:W= (, , , , , , ),對于圖3,通過使用相同的計算過程得W=(,)T.由阿達瑪凸組合的基礎(chǔ)理論,根據(jù)一致的比率選擇專家矩陣A1,A2,A3,A4,A5. 為了便于研究,本文設(shè)置不同的專家判斷矩陣的權(quán)值相同. 令 (0 .2, 0 .2 , 0 .2 , 0 .2 , 0 .2 )對于 有 ,CR=.同理對于 有,CR=4 矩陣聚合的選擇和優(yōu)化總之,通過使用4個不同的方法, 獲得4個權(quán)向量: 分析上面列出的權(quán)向量得索引系統(tǒng)G=(G1,G2,G3,G4,G5,G6,G7)的重要性排序列表① G3G7G1G2G4G6G5;② G3G7G1G2G4G5G6 ③ G3G1G7G2G4G5G6; ④ G3G7G1G2G4G5G6基于上面的排序結(jié)果,錯誤是G1和G7中列名的第二、第三的地方,和G5和G的第六和第七.結(jié)合上面方案的結(jié)果,在排序結(jié)果①②④中有G7G1而③中為G1,①②④中,②④的G5G6而①中G6G5故①,合理的排序方案是:對于聚合的專家矩陣A1,A2,A3,A4,A5, 應(yīng)該被選為指標(biāo)體系G= (G1, G2, G3, G4, G5, G6, G7)的權(quán)值.4 總結(jié),如何有效地減少這種差異, 在群體決策過程,應(yīng)用多種方法優(yōu)化和實際選擇將有利于提高矩陣聚合的合理性和一致性.5 參考文獻1. Lv Yuejin, Guo Xinrong. An Effective Aggregation Method for Group AHP Judgment Matrix. Theory and Practice of Systems Engineering, 2007,20(7):132136.2. Liu Xin, Yang Shanlin. Hadamard Convex Combinations of Judgment Matrix. Theory and Practice of Systems Engineering, 2000,10(4):8385.3. Yang Shanlin, Liu Xinbao. Two Aggregation Method of Judgment Matrix in GDSS. Journal of Computers, 2001,24(1):106111.4. Yang Shanlin, Liu Xinbao. Research on optimizing principle of Convex Combination coefficients of Judgment Matrix. Theory and Practice of Systems Engineering, 2001,21(8):5052.5. Xu Zeshui. A note in Document [1] and [2] for the Properties of Convex Combinations of Judgment Matrix. Theory and practice of Systems Engineering, 2001,21(1):139140.6. Wang Jian, Huang Fenggang, Jin Shaoguang. Study on Adjustment Method for Consistency of Judgment Matrix in AHP. Theory and Practice of Systems Engineering, 2005(8):8591.文章來源:The third session of the teaching management and course construction of academic conference proceedings,2012Application of Matrix Aggregation Method in Group Decision Making ProcessesWeilian Zhou(School of Management Hefei University of Technology Anhui Economic Management Institute Hefei, China)Abstract— The different matrix aggregation schemes will lead to various ranking relations and weighting vector results in group decision making processes. After analyzing and applying two kinds of the Hadamard convex bination based on matrix aggregation schemes and utilizing the graph theory, this paper will explore the more rational approaches to exam, select and optimize the results developed from different judgment matrix aggregations.Keywords— Group Decision Making。因此它需要遵循破圈法:首先,這些較大的特級偏差的元素都換成了添加元素之后品位偏差仍較小的元素。 1圖1所示。相反本文認為, 實際中有各樣的困難存在于判斷矩陣的重建。3 矩陣聚合方法的應(yīng)用步驟1:根據(jù)問題的變化,將對步驟1做一定的調(diào)整。運算符⊕定義如下若C=A⊕ B那么;若C=A由于判斷矩陣的群決策的聚集,文獻[2]提供了Hadamard凸組合的概念。步驟5:通過加法或乘法的方法匯總各組,并記錄結(jié)果為。2 矩陣聚合方法的描述基于圖論的矩陣聚合方法:建立一個水平偏差矩陣E,選擇更一致的因素從不同的專家判斷矩陣A(k),構(gòu)建一個完整的一致判斷矩陣。在實踐中解決問題,就必須采用不同的聚合方法和實施相關(guān)矩陣的驗證和選擇。不同的矩陣集合計劃將處理專家判斷數(shù)據(jù)、差異和聚合導(dǎo)致判斷矩陣的產(chǎn)生方式不同,因此在計算重要性和一致性是不同與另一方面。領(lǐng)域中的矩陣聚合,李躍進和郭欣榮利用連通的無向圖及其理論,通過排除偏見的專家判斷, 從理論的面向電力圖、簡單的mth無向連通圖想出了一個互反判斷矩陣聚合方法。關(guān)鍵詞: 群體決策;判斷矩陣;聚合;優(yōu)化1引言作為一個有效的方法用于多目標(biāo)和多因素決策、層次分析法已經(jīng)廣泛應(yīng)用于