【正文】
Step4: From expert judgment matrix A1Am, choosing all the elements that locate in the same position of in,and recording as ;Step5: Aggregating selected every group of by using additive or multiplicative method, and recording the results as;Step6: Using additive synthesis to get at (n1) and establishing prehensive judgment matrix A*, applying the method of summation to sort the schemes eventually. Matrix Aggregating Method Based on Hadamard Convex CombinationFor the aggregation of judgment matrix in group decision making, document [2] provides the concept of Hadamard convex binations, . if A1,A2,…..Am are judgment matrixes at number of m for the same problem, if it is,let (3) (4) Therefore, is named as an added convex bination for A1,A2,…Am, and is a Hadamard multiplicative convex bination. For the operators, ⊕ ,無向連通圖(F1)基于特級偏差矩陣E 因為它是不符合要求的無向連通圖,v1 v2 v4 v5,v1 v2 v3都在形成回路。如果A1,A2,..... Am在數(shù)量為m前提下是判斷矩陣,相同的問題,假如存在使得 (3) (4)因此,被命名為A1,A2,…Am的一個額外的凸組合,是一個阿達瑪乘法凸組合。同時,在這個過程中矩陣的聚合,同一聚合方案也存在不同的判斷矩陣不一致地聚合。 畢業(yè)設(shè)計 (外文翻譯)畢 業(yè) 設(shè) 計(論文)題 目: Application of Matrix Aggregation Method in Group Decision Making Process學(xué) 院: 數(shù)理學(xué)院 專業(yè)名稱: 信息與計算科學(xué) 學(xué) 號: 200941210104 學(xué)生姓名: 石夢弟 指導(dǎo)教師: 明廷橋 2013年2月20日矩陣聚合方法在群體決策過程的應(yīng)用周威廉(合肥科技大學(xué)經(jīng)濟管理學(xué)院,安徽合肥)摘要:在群體決策過程中,不同的矩陣集合計劃將產(chǎn)生各種不同的排名關(guān)系和權(quán)值向量。在實踐中解決問題,就必須采用不同的聚合方法和實施相關(guān)矩陣的驗證和選擇。運算符⊕定義如下若C=A⊕ B那么;若C=A因此它需要遵循破圈法:首先,這些較大的特級偏差的元素都換成了添加元素之后品位偏差仍較小的元素。are defined as follows:If C=A⊕ B,so,if C=AEnterprise development special fund project of Anhui province china in 2011. represents that the expert ranked at s values the importance by paring indicator i with j. (2)Step3: Selecting (n1) elements , which are got minimum value of grade deviation, meanwhile, require any one of (n1) elements is not given by the other (n2) elements。 1圖1所示。由于判斷矩陣的群決策的聚集,文獻[2]提供了Hadamard凸組合的概念。不同的矩陣集合計劃將處理專家判斷數(shù)據(jù)、差異和聚合導(dǎo)致判斷矩陣的產(chǎn)生方式不同,因此在計算重要性和一致性是不同與另一方面。在分析和應(yīng)用兩種凸組合的阿達瑪基于矩陣聚合方案及圖論之后,本文將從不同矩陣聚合的判斷中探索更合理的方法來測驗,選擇和優(yōu)化結(jié)果。本文將探討矩陣的可行性和存在的問題,從聚合方案啟動圖論和阿達瑪凸組合,做出相關(guān)的驗證、優(yōu)化和選擇。B則在此基礎(chǔ)上,文檔[3] 解釋了“加法”和“乘法”凸組合的判斷矩陣的基本理論,并認為“加法”和“乘法”凸組合判斷矩陣不僅可以消除主觀因素的影響,也可以保持和提高判斷矩陣的一致性,同時證明了相應(yīng)過程,因此它證實“加法”和“乘法”凸組合判斷矩陣在群體決策支持系統(tǒng)中對判斷矩陣是兩個有效的聚合方法。省略細節(jié)流程,得到無向圖的連接圖2和圖3。B,we will get the results that On this basis, document [3] explained the basic theory for “addition ”and “multiplication” convex binations of judgment matrix, it is believed that addition ”and “multiplication” convex binations of judgment matrix not only can eliminate the effects caused on subjective factors , but also can keep and improve consistency of judgment matrix, in the meanwhile the correspondent proving process was provided, therefore it is confirmed that “addition ”and “multiplication” convex binations of judgment matrix are two effective aggregating methods for judgment matrix in groups decision support system.3 The Application of Matrix Aggregation Method The Application of Matrix Aggregation Based on Graph TheoryStep1: According to the problem change in reality and e