【摘要】1.(2017秋﹒荊州區(qū)校級月考)已知,數(shù)軸上點A在原點左邊,到原點的距離為8個單位長度,點B在原點的右邊,從點A走到點B,要經(jīng)過32個單位長度.(1)求A、B兩點所對應的數(shù);(2)若點C也是數(shù)軸上的點,點C到點B的距離是點C到原點的距離的3倍,求點C對應的數(shù);(3)已知,點M從點A向右出發(fā),速度為每秒1個單位長度,同時點N從點B向右出發(fā),速度為每秒2個單位長度,設線段NO的中點為P
2025-03-31 03:10
【摘要】專業(yè)整理分享數(shù)軸上的動點問題專題1.已知數(shù)軸上兩點A、B對應的數(shù)分別為—1,3,點P為數(shù)軸上一動點,其對應的數(shù)為x。⑴若點P到點A、點B的距離相等,求點P對應的數(shù);⑵數(shù)軸上是否存在點P,使點P到點A、點B的距離之和為5?若存在,請求出x的值。若不存在,請說明理由?⑶
【摘要】......動點及動圖形的專題復習教案所謂“動點型問題”是指題設圖形中存在一個或多個動點,它們在線段、,靈活運用有關數(shù)學知識解決問題.關鍵:動中求靜.數(shù)學思想:分類思想函數(shù)思想方程思想數(shù)形結合思想轉化思想
2025-04-10 03:01
【摘要】特殊四邊形與動點問題類型之一:平行四邊形與動點1.如圖,在?ABCD中,E,F(xiàn)兩點在對角線BD上運動,且保持BE=DF,連結AE,CF.請你猜想AE與CF有怎樣的數(shù)量關系和位置關系,并對你的猜想加以證明解:猜想:AE=CF,AE∥CF,證明如下:∵四邊形ABCD是平行四邊形,
2025-08-01 12:30
【摘要】初二動點問題解析1.如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,動點P從A開始沿AD邊向D以1cm/s的速度運動;動點Q從點C開始沿CB邊向B以3cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一點到達端點時,另外一點也隨之停止運動,設運動時間為ts.(1)當t為何值時,四邊形PQCD為平行四邊形?(2)
2025-03-31 01:49
【摘要】初中數(shù)學動點問題練習題1、(寧夏回族自治區(qū))已知:等邊三角形的邊長為4厘米,長為1厘米的線段在的邊上沿方向以1厘米/秒的速度向點運動(運動開始時,點與點重合,點到達點時運動終止),過點分別作邊的垂線,與的其它邊交于兩點,線段運動的時間為秒.1、線段在運動的過程中,為何值時,四邊形恰為矩形?并求出該矩形的面積;CPQBAMN(2)線段在運動的過程中,四邊
2025-06-24 06:31
【摘要】動點問題生成的函數(shù)圖象專題學習目標:..典型例題B.OSOC.D.A.OtSttOSSt,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,,沿O→A→B→C(圖中“→”所示路線)勻速運動,⊥x軸,PN⊥y軸,垂足分別為M、,P點運動時間為t,則S關于t的函數(shù)圖象大致為(),AB=
2025-06-13 16:22
【摘要】蘇州分公司金閶校區(qū)數(shù)學組XueDaPersonalizedEducationDevelopmentCenter專題:解析幾何中的動點軌跡問題學大蘇分教研中心周坤軌跡方程的探求是解析幾何中的基本問題之一,也是近幾年各省高考中的常見題型之一。解答這類問題,需要善于揭示問題的內部規(guī)律及知識之間的相互聯(lián)系。本專題分成四個部分,首先從題目類型出發(fā),總結常見的幾類動點軌跡問
2025-03-30 05:55
【摘要】動點的軌跡問題根據(jù)動點的運動規(guī)律求出動點的軌跡方程,這是解析幾何的一大課題:一方面求軌跡方程的實質是將“形”轉化為“數(shù)”,將“曲線”轉化為“方程”,通過對方程的研究來認識曲線的性質;另一方面求軌跡方程是培養(yǎng)學生數(shù)形轉化的思想、方法以及技巧的極好教材。該內容不僅貫穿于“圓錐曲線”的教學的全過程,而且在建構思想、函數(shù)方程思想、化歸轉化思想等方面均有體現(xiàn)和滲透。軌跡問題是高考中的一個熱點
2025-03-30 12:53
【摘要】《相交線與平行線綜合探究型題》 1.(2014春?棲霞市期末)如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=
2025-03-31 03:17
【摘要】......數(shù)軸上動點問題【教學目標】1、學會用動態(tài)思維、方程的思想去分析問題和解決問題2、學會抓住動中含靜的思路(動時兩變量間的關系,靜時兩個變量間的等量關系)【教學重難點】重點:學會用動態(tài)思維、方程的思想去分析問
【摘要】......七年級線段動點問題1、如圖1,直線AB上有一點P,點M、N分別為線段PA、PB的中點AB=14.(1)若點P在線段AB上,且AP=8,則線段MN
2025-03-31 07:09
【摘要】專題3(動點路徑長)一.選擇題(共2小題)1.如圖,拋物線y=x2﹣x﹣與直線y=x﹣2交于A、B兩點(點A在點B的左側),動點P從A點出發(fā),先到達拋物線的對稱軸上的某點E,再到達x軸上的某點F,最后運動到點B.若使點P運動的總路徑最短,則點P運動的總路徑的長為( ?。.B.C.D. 2.如圖,半徑為4
【摘要】動點問題專項訓練1.如圖,在矩形中,AB=2,,動點P從點B出發(fā),沿路線作勻速運動,那么的面積S與點P運動的路程之間的函數(shù)圖象大致是()DCPBAO3113SxA.O113SxO3Sx3O113SxB.C.D.2
2025-04-10 03:28
【摘要】......動點問題所謂“動點型問題”是指題設圖形中存在一個或多個動點,它們在線段、,靈活運用有關數(shù)學知識解決問題.關鍵:動中求靜.數(shù)學思想:分類思想數(shù)形結合思想轉化思想1、如圖1,梯形ABCD中,AD∥
2025-06-24 06:53