【摘要】概率論與數(shù)理統(tǒng)計習(xí)題第三章隨機向量一、填空題:1、設(shè)隨機變量(X,Y)具有概率密度則c=,。X01P1/21/22、設(shè)相互獨立的兩個隨機變量X和Y具有同一概率分布,且X的概率分布如表則隨機變量Z=min{X,Y}的概率分布為。3、設(shè)平面區(qū)域D由曲線y=及直線y=0,x=
2025-01-20 18:20
【摘要】 概率論與數(shù)理統(tǒng)計 第一部份 習(xí)題 第一章 概率論基本概念一、填空題1、設(shè)A,B,C為3事件,則這3事件中恰有2個事件發(fā)生可表示為。2、設(shè),且A與B互不相容,則。3、口袋中有4只白球,2只紅球,從中隨機抽取3只,則取得2只白球,1只紅球的概率為
2025-06-29 17:20
【摘要】......隨機事件及其概率隨機事件習(xí)題1試說明隨機試驗應(yīng)具有的三個特點.習(xí)題2將一枚均勻的硬幣拋兩次,事件A,B,C分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”,試寫出樣本空間及事件
2025-06-30 20:55
【摘要】第四章隨機變量的數(shù)字特征1.甲、乙兩臺自動車床,生產(chǎn)同一種零件,生產(chǎn)1000件產(chǎn)品所出的次品數(shù)分別用x,h表示,經(jīng)過一段時間的考察,知x,h的分布律如下:x
2025-01-20 17:11
【摘要】第二章習(xí)題解答1. 設(shè)與分別是隨機變量X與Y的分布函數(shù),為使是某個隨機變量的分布函數(shù),則的值可取為(A). A. B. C. D.2.解:因為隨機變量={這4個產(chǎn)品中的次品數(shù)}的所有可能的取值為:0,1,2,3,4.且;;;;.因此所求的分布律為:X01
2025-06-30 21:00
【摘要】白淑敏崔紅衛(wèi)概率論與數(shù)理統(tǒng)計習(xí)1.試判斷下列試驗是否為隨機試驗:(1)在恒力的作用下一質(zhì)點作勻加速運動;(2)在5個同樣的球(標(biāo)號1,2,3,4,5,)中,任意取一個,觀察所取球的標(biāo)號;(3)在分析天平上稱量一小包白糖,并記錄稱量結(jié)果.解(1)不是隨機試驗,因為這樣的試驗只有唯一的結(jié)果.(2)是隨機試驗,因為取球可在相同條件下進行,每次取球有5個可能的結(jié)果:1
2024-08-18 08:01
【摘要】第一章隨機事件與概率§隨機試驗隨機事件一、選擇題1.設(shè)B表示事件“甲種產(chǎn)品暢銷”,C表示事件“乙種產(chǎn)品滯銷”,則依題意得A=,故選D.2.由,.二寫出下列隨機試驗的樣本空間1.23.分別表示折后三段長度。三、(1)任意拋擲一枚骰子可以看作是一次隨機試驗,;則,(2),,,,四、(1);(2);(3)
【摘要】習(xí)題1、(1)選中乘客是不超過30歲的乘車旅游的男性(2)選中的乘客是不超過30歲的女性或以旅游為乘車目的(3)選中乘客是不超過30歲的女性或乘車旅游的女性(4)選中乘客是30歲以上以旅游為目的男性2、(1)(2)(3)(4)3、(1)(2)(3)習(xí)題1、(該題題目有誤,請將改作)(1)(2)(3)
2025-06-30 21:10
【摘要】1.觀察某地區(qū)未來3天的天氣情況,記表示“有天不下雨”,用事件運算的關(guān)系式表示:“三天均下雨”“三天中至少有一天不下雨”。正確答案:2.一根長為的棍子在任意兩點折斷,則得到的三段能圍成三角形的概率為。正確答案:,且滿足,,則。正確答案:答案講解:試題出處:4.已知隨機變量的概率分布為,則,。正確答案:1,
2025-06-13 20:01
【摘要】某人投籃兩次,設(shè)A={恰有一次投中},B={至少有一次投中},C={兩次都投中},D={兩次都沒投中},又設(shè)隨機變量X為投中的次數(shù),試用X表示事件A,B,C,問A,B,C,D中哪些是互不相容事件?哪些是對立事件?{1}BX??{1}AX??解{2}CX??{0}DX??,AC??顯然,AD??,BD??,CD
2025-05-21 02:13
【摘要】......習(xí)題二,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個數(shù),求:(1)X的分布律;(2)X的分布函數(shù)并作圖;(3).【解】故X的分布律為X012
2025-06-30 15:15
【摘要】概率論與數(shù)理統(tǒng)計練習(xí)題系專業(yè)班姓名學(xué)號第一章隨機事件及其概率(一)一.選擇題1.對擲一粒骰子的試驗,在概率論中將“出現(xiàn)奇數(shù)點”稱為[C](A)不可能事件(B)必然事件(C)隨機事件
2025-07-03 17:08
【摘要】21《概率論與數(shù)理統(tǒng)計》1.將一枚均勻的硬幣拋兩次,事件分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”。試寫出樣本空間及事件中的樣本點。解:(正,正),(正,反),(反,正),(反,反)(正,正),(正,反);(正,正),(反,反)(正,正),(正,反),(反,正)2.在擲兩顆骰子的試驗中,事件分別表示“點數(shù)之和為偶數(shù)”,“點數(shù)
【摘要】習(xí)題二,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個數(shù),求:(1)X的分布律;(2)X的分布函數(shù)并作圖;(3).【解】故X的分布律為X012P(2)當(dāng)x0時,F(xiàn)(x)=P(X≤x)=0當(dāng)0≤x1時,F(xiàn)(x)=P(X≤x)=P(X=0)=當(dāng)1≤x2時,F(xiàn)(x)=P(
【摘要】習(xí)題答案第1章三、解答題1.設(shè)P(AB)=0,則下列說法哪些是正確的?(1)A和B不相容;(2)A和B相容;(3)AB是不可能事件;(4)AB不一定是不可能事件;(5)P(A)=0或P(B)=0(6)P(A–B)=P(A)解:(4)(6)正確.
2025-06-30 20:46