【摘要】第三章微分方程模型一、微分方程知識簡介我們要掌握常微分方程的一些基礎知識,對一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-30 22:55
【摘要】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-26 04:56
【摘要】微分方程建模Ⅱ動態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個預測戰(zhàn)爭結(jié)局的數(shù)學模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊和游擊部隊的所謂混合戰(zhàn)爭的。后來人們對這些模型作了改進用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預測戰(zhàn)爭勝負應該考慮哪些因素?;
2024-08-29 00:58
【摘要】機動目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2024-08-18 06:25
【摘要】Thursday,May26,20221第二章系統(tǒng)的數(shù)學模型Thursday,May26,20222本章的主要內(nèi)容控制系統(tǒng)微分方程建立傳遞函數(shù)控制系統(tǒng)的框圖和傳遞函數(shù)控制系統(tǒng)的信號流圖Thursday,May26,20223概述
2025-05-05 00:54
【摘要】本科畢業(yè)設計(論文)題目:高階線性微分方程與線性微分方程組之間關(guān)系的研究院(系)專業(yè)班級姓名學號
2024-12-12 00:42
【摘要】引言回顧?靜力學研究物體在力系作用下的平衡規(guī)律及力系的簡化;?運動學從幾何觀點研究物體的運動,而不涉及物體所受的力;?動力學研究物體的機械運動與作用力之間的關(guān)系。動力學就是從因果關(guān)系上論述物體的機械運動。是理論力學中最具普遍意義的部分,靜力學、運動學則是動力學的特殊情況。低速、宏觀物體的機械運動的普遍規(guī)律。
2025-06-22 14:51
【摘要】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(1,2),
2025-02-27 12:49
【摘要】引例:破案問題某公安局于晚上7時30分發(fā)現(xiàn)一具尸體,當天晚上8點20分,法醫(yī)測得尸體溫度為℃,1小時后,尸體被抬走的時候又測得尸體的溫度為℃。假定室溫在幾個小時內(nèi)均為℃,由案情分析得知張某為此案的主要嫌疑犯,但張某矢口否認,并有證人說:“下午張某一直在辦公室,下午5時打了一個電話后才離開辦公室”
2024-10-22 18:30
【摘要】微分方程模型馬忠明動態(tài)模型?描述對象特征隨時間(空間)的演變過程?分析對象特征的變化規(guī)律?預報對象特征的未來性態(tài)?研究控制對象特征的手段?根據(jù)函數(shù)及其變化率之間的關(guān)系確定函數(shù)微分方程建模?根據(jù)建模目的和問題分析作出簡化假設?按照內(nèi)在規(guī)律或用類比
2025-01-23 14:49
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實際的應用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-05-05 06:42
【摘要】第八講線性微分方程(2)高等教育電子音像出版社寧波大學陶祥興等編本節(jié)內(nèi)容提要一、準備工作.二、指數(shù)矩陣的定義和性質(zhì).三、基解矩陣的計算公式.四、拉氏變換及應用.一、準備工作.(1)xAx??A在前面一講中,除了基解矩陣,我們已經(jīng)得到了線性微分
2024-12-14 05:36
【摘要】偏微分方程組解法某厚度為10cm平壁原溫度為20,現(xiàn)其兩側(cè)面分別維持在20和120,試求經(jīng)過8秒后平壁內(nèi)溫度分布,并分析溫度分布隨時間的變化直至溫度分布穩(wěn)定為止。式中為導溫系數(shù),;。解:模型轉(zhuǎn)化為標準形式:初始條件為:邊界條件為:,函數(shù):%偏微分方程(一維動態(tài)傳熱)function[c,f,s]=pdefu
2025-06-25 21:46
【摘要】微分方程模型二、微分方程模型三、微分方程案例分析一、微分方程建模簡介四、微分方程的MATLAB求解五、微分方程綜合案例分析微分方程是研究變化規(guī)律的有力工具,在科技、工程、經(jīng)濟管理、生態(tài)、環(huán)境、人口和交通各個領(lǐng)域中有廣泛的應用。不少實際問題當我們采用微觀眼光觀察時都遵循著下面的模式:凈變化率=輸入率-輸出率(守恒原理)
2025-01-25 10:50
【摘要】數(shù)學建模微分方程在研究實際問題時,常常會聯(lián)系到某些變量的變化率或?qū)?shù),這樣所得到變量之間的關(guān)系式就是微分方程模型。微分方程模型反映的是變量之間的間接關(guān)系,因此,要得到直接關(guān)系,就得求微分方程。求解微分方程有三種方法:1)求精確解;2)求數(shù)值解(近似解);3)定性理論方法。一、導彈追蹤問題
2025-05-11 18:14