【摘要】雨竹林高考資訊網福建高考招生資訊網2010年高考數(shù)學二輪專題復習教案――立體幾何一、本章知識結構:二、重點知識回顧1、空間幾何體的結構特征(1)棱柱、棱錐、棱臺和多面體棱柱是由滿足下列三個條件的面圍成的幾何體:①有兩個面互相平行;②其余各面都是四邊形;③每相鄰兩個四邊形的公共邊都互相平行;棱柱按底面邊數(shù)可分為:三棱柱、四棱柱、五棱柱等.棱柱性質:①棱
2025-06-14 00:25
【摘要】精品資源第13講立體幾何高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計總分27分左右,考查的知識點在20個以內.選擇填空題考核立幾中的計算型問題,而解答題著重考查立幾中的邏輯推理型問題,當然,二者均應以正確的空間想象為前提.隨著新的課程改革的進一步實施,立體幾何考題正朝著“多一點思考,少一點計算”,以簡單幾何體為載體的線面位置關系的論證,角與
2025-07-05 17:27
【摘要】 (理)第3講 立體幾何中的向量方法 [考情考向·北京朝陽期末導航] 空間向量在立體幾何中的應用主要體現(xiàn)在利用空間向量解決立體幾何中的位置關系、空間角以及空間距離的計算等問題,是每年北京朝陽期末...
2025-04-03 02:18
【摘要】江蘇省鹽城市時楊中學二輪復習——立體幾何2020年3月1.用一些棱長為1cm的小正方體碼放成一個幾何體,圖1為其俯視圖,圖2為其主視圖則這個幾何體的體積最大是7cm3.圖1(俯視圖)圖2(主視圖),則多面體AC
2024-11-19 22:28
【摘要】2011年高考第二輪專題復習(教學案):立體幾何 第1課時直線、平面、空間幾何體 考綱指要: 立體幾何在高考中占據重要的地位,考察的重點及難點是直線與直線、直線與平面、平面與平面平行的性質和判定...
2025-03-15 03:37
【摘要】【專題五】立體幾何 【考情分析】 1.立體幾何內容既承擔著對邏輯思維能力的考查,又承擔著對空間想象能力的考查,常以選擇題、填空題的形式全面考查線線、線面、面面等空間位置關系,難度適中,縱觀歷年的高...
【摘要】浙江省專用本課件為“逐字編輯”課件,使用時欲修改課件,請雙擊對應內容,即可進入可編輯狀態(tài)。在此狀態(tài)下,如果有的公式雙擊后無法用公式編輯器編輯,請選中此公式,點擊右鍵、“切換域代碼”,即可進行編輯。修改后再點擊右鍵、“切換域代碼”,即完成修改。如有疑問歡迎致電:010-58818066專題4立體幾何
2025-07-23 21:57
【摘要】本課件為“逐字編輯”課件,使用時欲修改課件,請雙擊對應內容,即可進入可編輯狀態(tài)。在此狀態(tài)下,如果有的公式雙擊后無法用公式編輯器編輯,請選中此公式,點擊右鍵、“切換域代碼”,即可進行編輯。修改后再點擊右鍵、“切換域代碼”,即完成修改。第11講空間幾何體第12講點、直線、平面之間的位置關系性質第13講
2025-05-01 20:24
【摘要】空間幾何體空間幾何體的結構柱、錐、臺、球的結構特征簡單幾何體的結構特征三視圖柱、錐、臺、球的三視圖簡單幾何體的三視圖直觀圖斜二測畫法平面圖形空間幾何體中心投影柱、錐、臺、球的表面積與體積平行投影畫圖識圖柱錐臺球圓錐圓臺
2025-01-20 00:33
【摘要】1·如圖,四棱錐S-ABCD的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點。(Ⅰ)求證:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大?。á螅┰冢á颍┑臈l件下,側棱SC上是否存在一點E,∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。
2025-04-23 07:49
【摘要】專題突破練19 專題五 立體幾何過關檢測 一、單項選擇題 1.(2020山東德州一模,4)在正方體ABCD-A1B1C1D1中,P是C1D1的中點,且AP=A...
2025-04-03 02:25
【摘要】立體幾何復習講義【基礎回扣】1.平面平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉化為證明這些點是某兩個平面的公共點(依據:由點在線上,線在面內,推出點在面內),這樣可根據公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-13 21:19
【摘要】平面的基本性質公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內(教師引導學生閱讀教材P42前幾行相關內容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-23 00:53
【摘要】第1頁版權所有不得復制立體幾何中的數(shù)量問題二.重點、難點:1.角度(1)兩條異面直線所成角]2,0(?(2)直線與平面所成角]2,0[?(3)二面角],0[?2.距離(1)作垂線(2)體積轉化【典型例題】[例1]PA、PB
2024-08-15 15:14
【摘要】精品資源1.在平行六面體OABC---DEFG中(如圖),側面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設a是常數(shù)且0a1,P是EB上的點且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當a為何值時,有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-23 07:36